973 resultados para MEAN-MOTION RESONANCE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A constant-pressure axisymmetric turbulent boundary layer along a circular cylinder of radius a is studied at large values of the frictional Reynolds number a+ (based upon a) with the boundary-layer thickness δ of order a. Using the equations of mean motion and the method of matched asymptotic expansions, it is shown that the flow can be described by the same two limit processes (inner and outer) as are used in two-dimensional flow. The condition that the two expansions match requires the existence, at the lowest order, of a log region in the usual two-dimensional co-ordinates (u+, y+). Examination of available experimental data shows that substantial log regions do in fact exist but that the intercept is possibly not a universal constant. Similarly, the solution in the outer layer leads to a defect law of the same form as in two-dimensional flow; experiment shows that the intercept in the defect law depends on δ/a. It is concluded that, except in those extreme situations where a+ is small (in which case the boundary layer may not anyway be in a fully developed turbulent state), the simplest analysis of axisymmetric flow will be to use the two-dimensional laws with parameters that now depend on a+ or δ/a as appropriate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Synchronous chaos is investigated in the coupled system of two Logistic maps. Although the diffusive coupling admits all synchronized motions, the stabilities of their configurations are dependent on the transverse Lyapunov exponents while independent of the longitudinal Lyapunov exponents. It is shown that synchronous chaos is structurally stable with respect to the system parameters. The mean motion is the pseudo-orbit of an individual local map so that its dynamics can be described by the local map. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present an observational and dynamical study of newly discovered main-belt comet 313P/Gibbs. We find that the object is clearly active both in observations obtained in 2014 and in precovery observations obtained in 2003 by the Sloan Digital Sky Survey, strongly suggestingthat its activity is sublimation-driven. This conclusion is supported by a photometric analysis showing an increase in the total brightness of the comet over the 2014 observing period, and dust modeling resultsshowing that the dust emission persists over at least three months during both active periods, where we find start dates for emission nolater than 2003 July 24 ± 10 for the 2003 active period and 2014 July 28 ± 10 for the 2014 active period. From serendipitous observations by the Subaru Telescope in 2004 when the object was apparently inactive, we estimate that the nucleus has an absolute R-band magnitude of HR = 17.1 ± 0.3, corresponding to aneffective nucleus radius of re ∼ 1.00 ± 0.15 km.The object’s faintness at that time means we cannot rule out the presence of activity, and so this computed radius should be consideredan upper limit. We find that 313P’s orbit is intrinsically chaotic, having a Lyapunov time of Tl = 12,000 yr and beinglocated near two three-body mean-motion resonances with Jupiter andSaturn, 11J-1S-5A and 10J+12S-7A, yet appears stable over >50 Myr in an apparent example of stable chaos. We furthermore find that 313P is the second main-belt comet, after P/2012 T1 (PANSTARRS), to belong tothe ∼155 Myr old Lixiaohua asteroid family.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis we consider Wiener-Hopf-Hankel operators with Fourier symbols in the class of almost periodic, semi-almost periodic and piecewise almost periodic functions. In the first place, we consider Wiener-Hopf-Hankel operators acting between L2 Lebesgue spaces with possibly different Fourier matrix symbols in the Wiener-Hopf and in the Hankel operators. In the second place, we consider these operators with equal Fourier symbols and acting between weighted Lebesgue spaces Lp(R;w), where 1 < p < 1 and w belongs to a subclass of Muckenhoupt weights. In addition, singular integral operators with Carleman shift and almost periodic coefficients are also object of study. The main purpose of this thesis is to obtain regularity properties characterizations of those classes of operators. By regularity properties we mean those that depend on the kernel and cokernel of the operator. The main techniques used are the equivalence relations between operators and the factorization theory. An invertibility characterization for the Wiener-Hopf-Hankel operators with symbols belonging to the Wiener subclass of almost periodic functions APW is obtained, assuming that a particular matrix function admits a numerical range bounded away from zero and based on the values of a certain mean motion. For Wiener-Hopf-Hankel operators acting between L2-spaces and with possibly different AP symbols, criteria for the semi-Fredholm property and for one-sided and both-sided invertibility are obtained and the inverses for all possible cases are exhibited. For such results, a new type of AP factorization is introduced. Singular integral operators with Carleman shift and scalar almost periodic coefficients are also studied. Considering an auxiliar and simpler operator, and using appropriate factorizations, the dimensions of the kernels and cokernels of those operators are obtained. For Wiener-Hopf-Hankel operators with (possibly different) SAP and PAP matrix symbols and acting between L2-spaces, criteria for the Fredholm property are presented as well as the sum of the Fredholm indices of the Wiener-Hopf plus Hankel and Wiener-Hopf minus Hankel operators. By studying dependencies between different matrix Fourier symbols of Wiener-Hopf plus Hankel operators acting between L2-spaces, results about the kernel and cokernel of those operators are derived. For Wiener-Hopf-Hankel operators acting between weighted Lebesgue spaces, Lp(R;w), a study is made considering equal scalar Fourier symbols in the Wiener-Hopf and in the Hankel operators and belonging to the classes of APp;w, SAPp;w and PAPp;w. It is obtained an invertibility characterization for Wiener-Hopf plus Hankel operators with APp;w symbols. In the cases for which the Fourier symbols of the operators belong to SAPp;w and PAPp;w, it is obtained semi-Fredholm criteria for Wiener-Hopf-Hankel operators as well as formulas for the Fredholm indices of those operators.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we construct a dynamic portrait of the inner asteroidal belt. We use information about the distribution of test particles, which were initially placed on a perfectly rectangular grid of initial conditions, after 4.2 Myr of gravitational interactions with the Sun and five planets, from Mars to Neptune. Using the spectral analysis method introduced by Michtchenko et al., the asteroidal behaviour is illustrated in detail on the dynamical, averaged and frequency maps. On the averaged and frequency maps, we superpose information on the proper elements and proper frequencies of real objects, extracted from the data base, AstDyS, constructed by Milani and Knezevic. A comparison of the maps with the distribution of real objects allows us to detect possible dynamical mechanisms acting in the domain under study; these mechanisms are related to mean-motion and secular resonances. We note that the two- and three-body mean-motion resonances and the secular resonances (strong linear and weaker non-linear) have an important role in the diffusive transportation of the objects. Their long-lasting action, overlaid with the Yarkovsky effect, may explain many observed features of the density, size and taxonomic distributions of the asteroids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to the tides, the orbits of Phobos and Triton are contracting. While their semi major axes are decreasing, several possibilities of secular resonances involving node, argument of the pericenter and mean motion of the Sun will take place. In the case of Mars, if the obliquity (epsilon), during the passage through some resonances, is not so small, very significant variations of the inclination will appear. In one case, capture is almost certain provided that epsilon greater than or equal to 20degrees. For Triton there are also similar situations, but capture seems to be not possible, mainly because in S-1 state, Triton's orbit is sufficiently inclined (far) with respect to the Neptune's equator. Following Chyba et al. (Astron. Astrophys. 219 (1989) 123), a simplified equation that gives the evolution of the inclination versus the semi major axis, is derived. The time needed for Triton crash onto Neptune is longer than that one obtained by these authors, but the main difference is due to the new data used here. In general, even in the case of non-capture passages, some significant jumps in inclination and in eccentricities are possible. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We numerically investigate the long-term dynamics of the Saturnian system by analyzing the Fourier spectra of ensembles of orbits taken around the current orbits of Mimas, Enceladus, Tethys, Rhea and Hyperion. We construct dynamical maps around the current position of these satellites in their respective phase spaces. The maps are the result of a great deal of numerical simulations where we adopt dense sets of initial conditions and different satellite configurations. Several structures associated to the current two-body mean-motion resonances, unstable regions associated to close approaches between the satellites, and three-body mean-motion resonances in the system, are identified in the map. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Non-linear planar response of a string to planar narrow band random excitation is investigated in this paper. A response equation for the mean square deflection σ2 is obtained under a single mode approximation by using the equivalent linearization technique. It is shown that the response is triple valued, as in the case of harmonic excitation, if the centre frequency of excitation Ω lies in a certain specified range. The triple valued response occurs only if the excitation bandwidth β is smaller than a critical value βcrit which is a monotonically increasing function of the intensity of excitation. An approximate method of investigating the almost sure asymptotic stability of the solution is presented and regions of instability in the Ω-σ2 plane have been charted. It is shown that planar response can become unstable either due to an unbounded growth of the in-plane component of motion or due to a spontaneous appearance of an out-of-plane component.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chlorine has been substituted at the 2- and 4-positions in the pyridine and quinoline rings of the corresponding N-oxides and 35Cl n.q.r. spectra have been studied in the temperature range 77–300 K. The change in the n.q.r. frequencies in N-oxides as compared to their parent compounds are interpreted in terms of the conjugative effect and the inductive effect of the N+—O– group. The negative temperature coefficients of the resonance frequencies in chloropyridine-N-oxides have been analysed using the Bayer, Kushida and Brown equations. The calculated torsional frequencies, which are in the range 52–78 cm–1, are found to be only slightly temperature dependent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is known theoretically [1-3] that infinitely long fluid loaded plates in mean flow exhibit a range of unusual phenomena in the 'long time' limit. These include convective instability, absolute instability and negative energy waves which are destabilized by dissipation. However, structures are necessarily of finite length and may have discontinuities. Moreover, linear instability waves can only grow over a limited number of cycles before non-linear effects become dominant. We have undertaken an analytical and computational study to investigate the response of finite, discontinuous plates to ascertain if these unusual effects might be realized in practice. Analytically, we take a "wave scattering" [2,4] - as opposed to a "modal superposition" [5] - view of the fluttering plate problem. First, we solve for the scattering coefficients of localized plate discontinuities and identify a range of parameter space, well outside the convective instability regime, where over-scattering or amplified reflection/transmission occurs. These are scattering processes that draw energy from the mean flow into the plate. Next, we use the Wiener-Hopf technique to solve for the scattering coefficients from the leading and trailing edges of a baffled plate. Finally, we construct the response of a finite, baffled plate by a superposition of infinite plate propagating waves continuously scattering off the plate ends and solve for the unstable resonance frequencies and temporal growth rates for long plates. We present a comparison between our computational results and the infinite plate theory. In particular, the resonance response of a moderately sized plate is shown to be in excellent agreement with our long plate analytical predictions. Copyright © 2010 by ASME.