917 resultados para MDA (Model driven architecture)
Resumo:
In a world that is increasingly working with software, the need arises for effective approaches that encourage software reuse. The reuse practice must be aligned to a set of practices, procedures and methodologies that create a stable and high quality product. These questions produce new styles and approaches in the software engineering. In this way, this thesis aims to address concepts related to development and model-driven architecture. The model-driven approach provides significant aspects of the automated development, which helps it with produced models built in the specification phase. The definition of terms such as model, architecture and platform makes the focus becomes clearer, because for MDA and MDD is important to split between technical and business issues. Important processes are covered, so you can highlight the artifacts that are built into each stage of model-driven development. The stages of development: CSM, PIM, PSM and ISM, detailing the purpose of each phase in oriented models, making the end of each stage are gradually produced artifacts that may be specialized. The models are handled by different prospects for modeling, abstracting the concepts and building a set of details that portrays a specific scenario. This retraction can be a graphical or textual representation, however, in most cases is chosen a language modeling, for example, UML. In order to provide a practical view, this dissertation shows some tools that improve the construction of models and the code generate that assists in the development, keeping the documentation systemic. Finally, the paper presents a case study that refers to the theoretical aspects discussed throughout the dissertation, therefore it is expected that the architecture and the model-driven development may be able to explain important features to consider in software engineering
Towards model driven software development for Arduino platforms: a DSL and automatic code generation
Resumo:
La tesi ha lo scopo di esplorare la produzione di sistemi software per Embedded Systems mediante l'utilizzo di tecniche relative al mondo del Model Driven Software Development. La fase più importante dello sviluppo sarà la definizione di un Meta-Modello che caratterizza i concetti fondamentali relativi agli embedded systems. Tale modello cercherà di astrarre dalla particolare piattaforma utilizzata ed individuare quali astrazioni caratterizzano il mondo degli embedded systems in generale. Tale meta-modello sarà quindi di tipo platform-independent. Per la generazione automatica di codice è stata adottata una piattaforma di riferimento, cioè Arduino. Arduino è un sistema embedded che si sta sempre più affermando perché coniuga un buon livello di performance ed un prezzo relativamente basso. Tale piattaforma permette lo sviluppo di sistemi special purpose che utilizzano sensori ed attuatori di vario genere, facilmente connessi ai pin messi a disposizione. Il meta-modello definito è un'istanza del meta-metamodello MOF, definito formalmente dall'organizzazione OMG. Questo permette allo sviluppatore di pensare ad un sistema sotto forma di modello, istanza del meta-modello definito. Un meta-modello può essere considerato anche come la sintassi astratta di un linguaggio, quindi può essere definito da un insieme di regole EBNF. La tecnologia utilizzata per la definizione del meta-modello è stata Xtext: un framework che permette la scrittura di regole EBNF e che genera automaticamente il modello Ecore associato al meta-modello definito. Ecore è l'implementazione di EMOF in ambiente Eclipse. Xtext genera inoltre dei plugin che permettono di avere un editor guidato dalla sintassi, definita nel meta-modello. La generazione automatica di codice è stata realizzata usando il linguaggio Xtend2. Tale linguaggio permette di esplorare l'Abstract Syntax Tree generato dalla traduzione del modello in Ecore e di generare tutti i file di codice necessari. Il codice generato fornisce praticamente tutta la schematic part dell'applicazione, mentre lascia all'application designer lo sviluppo della business logic. Dopo la definizione del meta-modello di un sistema embedded, il livello di astrazione è stato spostato più in alto, andando verso la definizione della parte di meta-modello relativa all'interazione di un sistema embedded con altri sistemi. Ci si è quindi spostati verso un ottica di Sistema, inteso come insieme di sistemi concentrati che interagiscono. Tale difinizione viene fatta dal punto di vista del sistema concentrato di cui si sta definendo il modello. Nella tesi viene inoltre introdotto un caso di studio che, anche se abbastanza semplice, fornisce un esempio ed un tutorial allo sviluppo di applicazioni mediante l'uso del meta-modello. Ci permette inoltre di notare come il compito dell'application designer diventi piuttosto semplice ed immediato, sempre se basato su una buona analisi del problema. I risultati ottenuti sono stati di buona qualità ed il meta-modello viene tradotto in codice che funziona correttamente.
Resumo:
Questo lavoro di tesi si focalizza sulla modellazione di sistemi software in grado far interagire piattaforme elettroniche differenti tra loro.
Resumo:
Embedded systems are commonly designed by specifying and developing hardware and software systems separately. On the contrary, the hardware/software (HW/SW) co-development exploits the trade-offs between hardware and software in a system through their concurrent design. HW/SW Codevelopment techniques take advantage of the flexibility of system design to create architectures that can meet stringent performance requirements with a shorter design cycle. This paper presents the work done within the scope of ESA HWSWCO (Hardware-Software Co-design) study. The main objective of this study has been to address the HW/SW co-design phase to integrate this engineering task as part of the ASSERT process (refer to [1]) and compatible with the existing ASSERT approach, process and tool, Advances in the automation of the design of HW and SW and the adoption of the Model Driven Architecture (MDA) [9] paradigm make possible the definition of a proper integration substrate and enables the continuous interaction of the HW and SW design paths.
Resumo:
In this introductory chapter we put in context and give a brief outline of the work that we thoroughly present in the rest of the dissertation. We consider this work divided in two main parts. The first part is the Firenze Framework, a knowledge level description framework rich enough to express the semantics required for describing both semantic Web services and semantic Grid services. We start by defining what the Semantic Grid is and its relation with the Semantic Web; and the possibility of their convergence since both initiatives have become mainly service-oriented. We also introduce the main motivators of the creation of this framework, one is to provide a valid description framework that works at knowledge level; the other to provide a description framework that takes into account the characteristics of Grid services in order to be able to describe them properly. The other part of the dissertation is devoted to Vega, an event-driven architecture that, by means of proposed knowledge level description framework, is able to achieve high scale provisioning of knowledge-intensive services. In this introductory chapter we portrait the anatomy of a generic event-driven architecture, and we briefly enumerate their main characteristics, which are the reason that make them our choice.
Resumo:
How to create or integrate large Smart Spaces (considered as mash-ups of sensors and actuators) into the paradigm of ?Web of Things? has been the motivation of many recent works. A cutting-edge approach deals with developing and deploying web-enabled embedded devices with two major objectives: 1) to integrate sensor and actuator technologies into everyday objects, and 2) to allow a diversity of devices to plug to Internet. Currently, developers who want to use this Internet-oriented approach need have solid understanding about sensorial platforms and semantic technologies. In this paper we propose a Resource-Oriented and Ontology-Driven Development (ROOD) methodology, based on Model Driven Architecture (MDA), to facilitate to any developer the development and deployment of Smart Spaces. Early evaluations of the ROOD methodology have been successfully accomplished through a partial deployment of a Smart Hotel.
Resumo:
Abstract. The ASSERT project de?ned new software engineering methods and tools for the development of critical embedded real-time systems in the space domain. The ASSERT model-driven engineering process was one of the achievements of the project and is based on the concept of property- preserving model transformations. The key element of this process is that non-functional properties of the software system must be preserved during model transformations. Properties preservation is carried out through model transformations compliant with the Ravenscar Pro?le and provides a formal basis to the process. In this way, the so-called Ravenscar Computational Model is central to the whole ASSERT process. This paper describes the work done in the HWSWCO study, whose main objective has been to address the integration of the Hardware/Software co-design phase in the ASSERT process. In order to do that, non-functional properties of the software system must also be preserved during hardware synthesis. Keywords : Ada 2005, Ravenscar pro?le, Hardware/Software co-design, real- time systems, high-integrity systems, ORK
Resumo:
We present an undergraduate course on concurrent programming where formal models are used in different stages of the learning process. The main practical difference with other approaches lies in the fact that the ability to develop correct concurrent software relies on a systematic transformation of formal models of inter-process interaction (so called shared resources), rather than on the specific constructs of some programming language. Using a resource-centric rather than a language-centric approach has some benefits for both teachers and students. Besides the obvious advantage of being independent of the programming language, the models help in the early validation of concurrent software design, provide students and teachers with a lingua franca that greatly simplifies communication at the classroom and during supervision, and help in the automatic generation of tests for the practical assignments. This method has been in use, with slight variations, for some 15 years, surviving changes in the programming language and course length. In this article, we describe the components and structure of the current incarnation of the course?which uses Java as target language?and some tools used to support our method. We provide a detailed description of the different outcomes that the model-driven approach delivers (validation of the initial design, automatic generation of tests, and mechanical generation of code) from a teaching perspective. A critical discussion on the perceived advantages and risks of our approach follows, including some proposals on how these risks can be minimized. We include a statistical analysis to show that our method has a positive impact in the student ability to understand concurrency and to generate correct code.
Resumo:
This summary presents a methodology for supporting the development of AOSAs following the MDD paradigm. This new methodology is called PRISMA and allows the code generation from models which specify functional and non-functional requirements.
Resumo:
Nowadays, there are sound methods and tools which implement the Model-Driven Development approach (MDD) satisfactorily. However, MDD approaches focus on representing and generating code that represents functionality, behaviour and persistence, putting the interaction, and more specifically the usability, in a second place. If we aim to include usability features in a system developed with a MDD tool, we need to extend manually the generated code
Resumo:
Geographic knowledge discovery (GKD) is the process of extracting information and knowledge from massive georeferenced databases. Usually the process is accomplished by two different systems, the Geographic Information Systems (GIS) and the data mining engines. However, the development of those systems is a complex task due to it does not follow a systematic, integrated and standard methodology. To overcome these pitfalls, in this paper, we propose a modeling framework that addresses the development of the different parts of a multilayer GKD process. The main advantages of our framework are that: (i) it reduces the design effort, (ii) it improves quality systems obtained, (iii) it is independent of platforms, (iv) it facilitates the use of data mining techniques on geo-referenced data, and finally, (v) it ameliorates the communication between different users.