912 resultados para MCMC ALGORITHMS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis deals with the problem of the instantaneous frequency (IF) estimation of sinusoidal signals. This topic plays significant role in signal processing and communications. Depending on the type of the signal, two major approaches are considered. For IF estimation of single-tone or digitally-modulated sinusoidal signals (like frequency shift keying signals) the approach of digital phase-locked loops (DPLLs) is considered, and this is Part-I of this thesis. For FM signals the approach of time-frequency analysis is considered, and this is Part-II of the thesis. In part-I we have utilized sinusoidal DPLLs with non-uniform sampling scheme as this type is widely used in communication systems. The digital tanlock loop (DTL) has introduced significant advantages over other existing DPLLs. In the last 10 years many efforts have been made to improve DTL performance. However, this loop and all of its modifications utilizes Hilbert transformer (HT) to produce a signal-independent 90-degree phase-shifted version of the input signal. Hilbert transformer can be realized approximately using a finite impulse response (FIR) digital filter. This realization introduces further complexity in the loop in addition to approximations and frequency limitations on the input signal. We have tried to avoid practical difficulties associated with the conventional tanlock scheme while keeping its advantages. A time-delay is utilized in the tanlock scheme of DTL to produce a signal-dependent phase shift. This gave rise to the time-delay digital tanlock loop (TDTL). Fixed point theorems are used to analyze the behavior of the new loop. As such TDTL combines the two major approaches in DPLLs: the non-linear approach of sinusoidal DPLL based on fixed point analysis, and the linear tanlock approach based on the arctan phase detection. TDTL preserves the main advantages of the DTL despite its reduced structure. An application of TDTL in FSK demodulation is also considered. This idea of replacing HT by a time-delay may be of interest in other signal processing systems. Hence we have analyzed and compared the behaviors of the HT and the time-delay in the presence of additive Gaussian noise. Based on the above analysis, the behavior of the first and second-order TDTLs has been analyzed in additive Gaussian noise. Since DPLLs need time for locking, they are normally not efficient in tracking the continuously changing frequencies of non-stationary signals, i.e. signals with time-varying spectra. Nonstationary signals are of importance in synthetic and real life applications. An example is the frequency-modulated (FM) signals widely used in communication systems. Part-II of this thesis is dedicated for the IF estimation of non-stationary signals. For such signals the classical spectral techniques break down, due to the time-varying nature of their spectra, and more advanced techniques should be utilized. For the purpose of instantaneous frequency estimation of non-stationary signals there are two major approaches: parametric and non-parametric. We chose the non-parametric approach which is based on time-frequency analysis. This approach is computationally less expensive and more effective in dealing with multicomponent signals, which are the main aim of this part of the thesis. A time-frequency distribution (TFD) of a signal is a two-dimensional transformation of the signal to the time-frequency domain. Multicomponent signals can be identified by multiple energy peaks in the time-frequency domain. Many real life and synthetic signals are of multicomponent nature and there is little in the literature concerning IF estimation of such signals. This is why we have concentrated on multicomponent signals in Part-H. An adaptive algorithm for IF estimation using the quadratic time-frequency distributions has been analyzed. A class of time-frequency distributions that are more suitable for this purpose has been proposed. The kernels of this class are time-only or one-dimensional, rather than the time-lag (two-dimensional) kernels. Hence this class has been named as the T -class. If the parameters of these TFDs are properly chosen, they are more efficient than the existing fixed-kernel TFDs in terms of resolution (energy concentration around the IF) and artifacts reduction. The T-distributions has been used in the IF adaptive algorithm and proved to be efficient in tracking rapidly changing frequencies. They also enables direct amplitude estimation for the components of a multicomponent

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The QUT-NOISE-TIMIT corpus consists of 600 hours of noisy speech sequences designed to enable a thorough evaluation of voice activity detection (VAD) algorithms across a wide variety of common background noise scenarios. In order to construct the final mixed-speech database, a collection of over 10 hours of background noise was conducted across 10 unique locations covering 5 common noise scenarios, to create the QUT-NOISE corpus. This background noise corpus was then mixed with speech events chosen from the TIMIT clean speech corpus over a wide variety of noise lengths, signal-to-noise ratios (SNRs) and active speech proportions to form the mixed-speech QUT-NOISE-TIMIT corpus. The evaluation of five baseline VAD systems on the QUT-NOISE-TIMIT corpus is conducted to validate the data and show that the variety of noise available will allow for better evaluation of VAD systems than existing approaches in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signalling layout design is one of the keys to railway operations with fixed-block signalling system and it also carries direct effect on overall train efficiency and safety. Based on an analysis to system objectives, this paper presents an optimization model with two objectives in order to devise an efficient signalling layout scheme. Taking into account the present railway line design practices in China, the paper describes steps of the computer-based signalling layout optimisation with real-coded genetic algorithms. A computer-aided system, based on train movement simulator, has also been employed to assist the optimisation process. A case study on a practical railway line has been conducted to make comparisons between the proposed GA-based approach and the current practices. The results illustrate the improved performance of the proposed approach in reducing signal block joints and shortening minimum train service headway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Railway service is now the major transportation means in most of the countries around the world. With the increasing population and expanding commercial and industrial activities, a high quality of railway service is the most desirable. We present an application of genetic algorithms (GA) to search for the appropriate coasting point(s) and investigate the possible improvement on fitness of genes. Single and multiple coasting point control with simple GA are developed to attain the solutions and their corresponding train movement is examined. The multiple coasting point control with hierarchical genetic algorithm (HGA) is then proposed to integrate the determination of the number of coasting points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a seminal data mining article, Leo Breiman [1] argued that to develop effective predictive classification and regression models, we need to move away from the sole dependency on statistical algorithms and embrace a wider toolkit of modeling algorithms that include data mining procedures. Nevertheless, many researchers still rely solely on statistical procedures when undertaking data modeling tasks; the sole reliance on these procedures has lead to the development of irrelevant theory and questionable research conclusions ([1], p.199). We will outline initiatives that the HPC & Research Support group is undertaking to engage researchers with data mining tools and techniques; including a new range of seminars, workshops, and one-on-one consultations covering data mining algorithms, the relationship between data mining and the research cycle, and limitations and problems with these new algorithms. Organisational limitations and restrictions to these initiatives are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic control at a road junction by a complex fuzzy logic controller is investigated. The increase in the complexity of junction means more number of input variables must be taken into account, which will increase the number of fuzzy rules in the system. A hierarchical fuzzy logic controller is introduced to reduce the number of rules. Besides, the increase in the complexity of the controller makes formulation of the fuzzy rules difficult. A genetic algorithm based off-line leaning algorithm is employed to generate the fuzzy rules. The learning algorithm uses constant flow-rates as training sets. The system is tested by both constant and time-varying flow-rates. Simulation results show that the proposed controller produces lower average delay than a fixed-time controller does under various traffic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a Genetic Algorithms (GA) approach to search the optimized path for a class of transportation problems. The formulation of the problems for suitable application of GA will be discussed. Exchanging genetic information in the sense of neighborhoods will be introduced for generation reproduction. The performance of the GA will be evaluated by computer simulation. The proposed algorithm use simple coding with population size 1 converged in reasonable optimality within several minutes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the empirical comparison of seven machine learning algorithms in texture classification with application to vegetation management in power line corridors. Aiming at classifying tree species in power line corridors, object-based method is employed. Individual tree crowns are segmented as the basic classification units and three classic texture features are extracted as the input to the classification algorithms. Several widely used performance metrics are used to evaluate the classification algorithms. The experimental results demonstrate that the classification performance depends on the performance matrix, the characteristics of datasets and the feature used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computation Fluid Dynamics (CFD) has become an important tool in optimization and has seen successful in many real world applications. Most important among these is in the optimisation of aerodynamic surfaces which has become Multi-Objective (MO) and Multidisciplinary (MDO) in nature. Most of these have been carried out for a given set of input parameters such as free stream Mach number and angle of attack. One cannot ignore the fact that in aerospace engineering one frequently deals with situations where the design input parameters and flight/flow conditions have some amount of uncertainty attached to them. When the optimisation is carried out for fixed values of design variables and parameters however, one arrives at an optimised solution that results in good performance at design condition but poor drag or lift to drag ratio at slightly off-design conditions. The challenge is still to develop a robust design that accounts for uncertainty in the design in aerospace applications. In this paper this issue is taken up and an attempt is made to prevent the fluctuation of objective performance by using robust design technique or Uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes algorithms that can musically augment the realtime performance of electronic dance music by generating new musical material by morphing. Note sequence morphing involves the algorithmic generation of music that smoothly transitions between two existing musical segments. The potential of musical morphing in electronic dance music is outlined and previous research is summarised; including discussions of relevant music theoretic and algorithmic concepts. An outline and explanation is provided of a novel Markov morphing process that uses similarity measures to construct transition matrices. The paper reports on a ‘focus-concert’ study used to evaluate this morphing algorithm and to compare its output with performances from a professional DJ. Discussions of this trial include reflections on some of the aesthetic characteristics of note sequence morphing. The research suggests that the proposed morphing technique could be effectively used in some electronic dance music contexts.