998 resultados para MATLAB software
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Image segmentation is a process frequently used in several different areas including Cartography. Feature extraction is a very troublesome task, and successful results require more complex techniques and good quality data. The aims of this paper is to study Digital Image Processing techniques, with emphasis in Mathematical Morphology, to use Remote Sensing imagery, making image segmentation, using morphological operators, mainly the multi-scale morphological gradient operator. In the segmentation process, pre-processing operators of Mathematical Morphology were used, and the multi-scales gradient was implemented to create one of the images used as marker image. Orbital image of the Landsat satellite, sensor TM was used. The MATLAB software was used in the implementation of the routines. With the accomplishment of tests, the performance of the implemented operators was verified and carried through the analysis of the results. The extration of linear feature, using mathematical morphology techniques, can contribute in cartographic applications, as cartographic products updating. The comparison to the best result obtained was performed by means of the morphology with conventional techniques of features extraction. © Springer-Verlag 2004.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Lateral asymmetries are in everywhere as well as in all movements made by man, which become more evident in movements of sport. The asymmetry is particularly pointed out in futsal when players, even with clear opportunity of making use of their non-preferred foot, try to place the ball in order to execute the action with their preferred foot. The study of asymmetry in futsal is quite relevant, once ambidextrous players present advantages in their performances during a match, which can help futsal athletes not only in their performance improvement but also with the prescription of training. For this reason, the present study had questioned: is there symmetry/asymmetry at the performance of lower contralateral limbs during actions with the possession ball (pass, receiving a ball and kick into the goal) during a futsal match? Thus, the aim of this study was to analyze the symmetry/asymmetry using the preferred and non-preferred foot in actions with the possession ball (pass, receiving and shoot) in adult Futsal's players (professional). The winner team of eight matches of the 2012 FIFA Futsal World Cup was analyzed. An average of 75 players had all their actions (pass, receiving a ball and shot on goal) using their lower limbs during the match analyzed. However, their actions with the head and torso were not analyzed. The games were acquired through a television broadcast. All eight matches were followed by an appraiser through a computer. The Skout® software was used to collect the data, taking notes of the player involved, the type of action (pass, receiving a ball and shot on goal), its foot used (preferred or non-preferred foot) and if the execution was correct or wrong. These data were saved in a text file, in the form of a matrix and imported into the Matlab® software, where was analyzed the following parameters: frequency of occurrence of each action with each foot and quantity of correct and wrong occurrences performed with...
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
This paper presents the application and use of a methodology based on fuzzy theory and simulates its use in intelligent control of a hybrid system for generating electricity, using solar energy, photovoltaic and wind. When using a fuzzy control system, it reached the point of maximum generation of energy, thus shifting all energy generated from the alternative sources-solar photovoltaic and wind, cargo and / or batteries when its use not immediately. The model uses three variables used for entry, which are: wind speed, solar radiation and loading the bank of batteries. For output variable has to choose which of the batteries of the battery bank is charged. For the simulations of this work is used MATLAB software. In this environment mathematical computational are analyzed and simulated all mathematical modeling, rules and other variables in the system described fuzzy. This model can be used in a system of control of hybrid systems for generating energy, providing the best use of energy sources, sun and wind, so we can extract the maximum energy possible these alternative sources without any prejudice to the environment.
Resumo:
Pós-graduação em Agronegócio e Desenvolvimento - Tupã
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The aim of the present study was to evaluate the use MRI to quantify the workload of gluteus medius (GM), vastus medialis (VM) and vastus lateralis (VL) muscles in different types of squat exercises. Fourteen female volunteers were evaluated, average age of 22 +/- 2 years, sedentary, without clinical symptoms, and without history of previous lower limb injuries. Quantitative MRI was used to analyze VM, VL and GM muscles before and after squat exercise, squat associated with isometric hip adduction and squat associated with isometric hip abduction. Multi echo images were acquired to calculate the transversal relaxation times (T2) before and after exercise. Mixed Effects Model statistical analysis was used to compare images before and after the exercise (Delta T2) to normalize the variability between subjects. Imaging post processing was performed in Matlab software. GM muscle was the least active during the squat associated with isometric hip adduction and VM the least active during the squat associated with isometric hip abduction, while VL was the most active during squat associated with isometric hip adduction. Our data suggests that isometric hip adduction during the squat does not increase the workload of VM, but decreases the GM muscle workload. Squat associated with isometric hip abduction does not increase VL workload.
Resumo:
The Gulf of Aqaba represents a small scale, easy to access, regional analogue of larger oceanic oligotrophic systems. In this Gulf, the seasonal cycles of stratification and mixing drives the seasonal phytoplankton dynamics. In summer and fall, when nutrient concentrations are very low, Prochlorococcus and Synechococcus are more abundant in the surface water. This two populations are exposed to phosphate limitation. During winter mixing, when nutrient concentrations are high, Chlorophyceae and Cryptophyceae are dominant but scarce or absent during summer. In this study it was tried to develop a simulation model based on historical data to predict the phytoplankton dynamics in the northern Gulf of Aqaba. The purpose is to understand what forces operate, and how, to determine the phytoplankton dynamics in this Gulf. To make the models data sampled in two different sampling station (Fish Farm Station and Station A) were used. The data of chemical, biological and physical factors, are available from 14th January 2007 to 28th December 2009. The Fish Farm Station point was near a Fish Farm that was operational until 17th June 2008, complete closure date of the Fish Farm, about halfway through the total sampling time. The Station A sampling point is about 13 Km away from the Fish Farm Station. To build the model, the MATLAB software was used (version 7.6.0.324 R2008a), in particular a tool named Simulink. The Fish Farm Station models shows that the Fish Farm activity has altered the nutrient concentrations and as a consequence the normal phytoplankton dynamics. Despite the distance between the two sampling stations, there might be an influence from the Fish Farm activities also in the Station A ecosystem. The models about this sampling station shows that the Fish Farm impact appears to be much lower than the impact in the Fish Farm Station, because the phytoplankton dynamics appears to be driven mainly by the seasonal mixing cycle.
Resumo:
Laser Shock Peening (LSP) is a surface enhancement treatment which induces a significant layer of beneficial compressive residual stresses up to several mm underneath the surface of metal components in order to improve the detrimental effects of crack growth behavior rate in it. The aim of this thesis is to predict the crack growth behavior of thin Aluminum specimens with one or more LSP stripes defining a compressive residual stress area. The LSP treatment has been applied as crack retardation stripes perpendicular to the crack growing direction, with the objective of slowing down the crack when approaching the LSP patterns. Different finite element approaches have been implemented to predict the residual stress field left by the laser treatment, mostly by means of the commercial software Abaqus/Explicit. The Afgrow software has been used to predict the crack growth behavior of the component following the laser peening treatment and to detect the improvement in fatigue life comparing to the specimen baseline. Furthermore, an analytical model has been implemented on the Matlab software to make more accurate predictions on fatigue life of the treated components. An educational internship at the Research and Technologies Germany- Hamburg department of Airbus helped to achieve knowledge and experience to write this thesis. The main tasks of the thesis are the following: -To up to date Literature Survey related to laser shock peening in metallic structures -To validate the FE models developed against experimental measurements at coupon level -To develop design of crack growth slow down in centered and edge cracked tension specimens based on residual stress engineering approach using laser peened patterns transversal to the crack path -To predict crack growth behavior of thin aluminum panels -To validate numerical and analytical results by means of experimental tests.
Resumo:
This research initiative was triggered by the problems of water management of Polymer Electrolyte Membrane Fuel Cell (PEMFC). In low temperature fuel cells such as PEMFC, some of the water produced after the chemical reaction remains in its liquid state. Excess water produced by the fuel cell must be removed from the system to avoid flooding of the gas diffusion layers (GDL). The GDL is responsible for the transport of reactant gas to the active sites and remove the water produced from the sites. If the GDL is flooded, the supply gas will not be able to reach the reactive sites and the fuel cell fails. The choice of water removal method in this research is to exert a variable asymmetrical force on a liquid droplet. As the drop of liquid is subjected to an external vibrational force in the form of periodic wave, it will begin to oscillate. A fluidic oscillator is capable to produce a pulsating flow using simple balance of momentum fluxes between three impinging jets. By connecting the outputs of the oscillator to the gas channels of a fuel cell, a flow pulsation can be imposed on a water droplet formed within the gas channel during fuel cell operation. The lowest frequency produced by this design is approximately 202 Hz when a 20 inches feed-back port length was used and a supply pressure of 5 psig was introduced. This information was found by setting up a fluidic network with appropriate data acquisition. The components include a fluidic amplifier, valves and fittings, flow meters, a pressure gage, NI-DAQ system, Siglab®, Matlab software and four PCB microphones. The operating environment of the water droplet was reviewed, speed of the sound pressure which travels down the square channel was precisely estimated, and measurement devices were carefully selected. Applicable alternative measurement devices and its application to pressure wave measurement was considered. Methods for experimental setup and possible approaches were recommended, with some discussion of potential problems with implementation of this technique. Some computational fluid dynamic was also performed as an approach to oscillator design.
Resumo:
Coordinated eye and head movements simultaneously occur to scan the visual world for relevant targets. However, measuring both eye and head movements in experiments allowing natural head movements may be challenging. This paper provides an approach to study eye-head coordination: First, we demonstra- te the capabilities and limits of the eye-head tracking system used, and compare it to other technologies. Second, a beha- vioral task is introduced to invoke eye-head coordination. Third, a method is introduced to reconstruct signal loss in video- based oculography caused by cornea reflection artifacts in order to extend the tracking range. Finally, parameters of eye- head coordination are identified using EHCA (eye-head co- ordination analyzer), a MATLAB software which was developed to analyze eye-head shifts. To demonstrate the capabilities of the approach, a study with 11 healthy subjects was performed to investigate motion behavior. The approach presented here is discussed as an instrument to explore eye-head coordination, which may lead to further insights into attentional and motor symptoms of certain neurological or psychiatric diseases, e.g., schizophrenia.
Resumo:
With continuous new improvements in brachytherapy source designs and techniques, method of 3D dosimetry for treatment dose verifications would better ensure accurate patient radiotherapy treatment. This study was aimed to first evaluate the 3D dose distributions of the low-dose rate (LDR) Amersham 6711 OncoseedTM using PRESAGE® dosimeters to establish PRESAGE® as a suitable brachytherapy dosimeter. The new AgX100 125I seed model (Theragenics Corporation) was then characterized using PRESAGE® following the TG-43 protocol. PRESAGE® dosimeters are solid, polyurethane-based, 3D dosimeters doped with radiochromic leuco dyes that produce a linear optical density response to radiation dose. For this project, the radiochromic response in PRESAGE® was captured using optical-CT scanning (632 nm) and the final 3D dose matrix was reconstructed using the MATLAB software. An Amersham 6711 seed with an air-kerma strength of approximately 9 U was used to irradiate two dosimeters to 2 Gy and 11 Gy at 1 cm to evaluate dose rates in the r=1 cm to r=5 cm region. The dosimetry parameters were compared to the values published in the updated AAPM Report No. 51 (TG-43U1). An AgX100 seed with an air-kerma strength of about 6 U was used to irradiate two dosimeters to 3.6 Gy and 12.5 Gy at 1 cm. The dosimetry parameters for the AgX100 were compared to the values measured from previous Monte-Carlo and experimental studies. In general, the measured dose rate constant, anisotropy function, and radial dose function for the Amersham 6711 showed agreements better than 5% compared to consensus values in the r=1 to r=3 cm region. The dose rates and radial dose functions measured for the AgX100 agreed with the MCNPX and TLD-measured values within 3% in the r=1 to r=3 cm region. The measured anisotropy function in PRESAGE® showed relative differences of up to 9% with the MCNPX calculated values. It was determined that post-irradiation optical density change over several days was non-linear in different dose regions, and therefore the dose values in the r=4 to r=5 cm regions had higher uncertainty due to this effect. This study demonstrated that within the radial distance of 3 cm, brachytherapy dosimetry in PRESAGE® can be accurate within 5% as long as irradiation times are within 48 hours.