932 resultados para MANGANESE-DIOXIDE
Resumo:
Tin dioxide is an n-type semiconductor that when doped with other metallic oxides exhibits non-linear electric behavior with high non-linear coefficient values typical of a varistor. In this work, electrical properties of the SnO2.CoO.Ta2O5 and SnO2.CoO.MnO2.Ta2O5 ceramics systems were studied with the objective of analyzing the influence of MnO2 on sintering behavior and electrical properties of these systems. The compacts were prepared by powder mixture process and sintered at 1300°C for 1 hour, in air, using a constant heating rate of 10°C/min. The morphological and structural properties were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The densities of the sintered ceramics were measured using the Archimedes method. The SnO2.CoO.Ta2O5 and SnO2.CoO.MnO2.Ta2O5 systems presented breakdown fields (Eb) about 3100 V.cm-1 and 3800 V.cm-1, respectively, and non-linear coefficient (α) about 10 and 20, respectively.
Resumo:
A simple hybrid synthesis processing method was developed to synthesize γ-MnO2 nanocrystalline particles. The polyol method was modified by the addition of nitric acid in order to allow the synthesizing of single-phase Mn3O4 in a large scale. In the sequence, the acid digestion technique was used to transform Mn3O4 into γ-MnO2. Structural and morphological characterization was carried out by X-ray diffractometry, Infrared and Raman spectroscopy, thermogravimetric analysis, nitrogen adsorption isotherm, scanning electron microscopy, and transmission electron microscopy. The electrochemical properties were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The synthesized material exhibits a specific capacitance of 125.1 F g-1 at a mass loading of 0.98 mg cm-2. The relation between structural features and electrochemical activity is discussed by comparing the synthesized material with commercial electrolytic manganese dioxide. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
The oxygen reduction reaction (ORR) was studied in KOH electrolyte on carbon supported epsilon-manganese dioxide (epsilon-MnO2/C). The epsilon-MnO2/C catalyst was prepared via thermal decomposition of manganese nitrate and carbon powder (Vulcan XC-72) mixtures. X-ray powder diffraction (XRD) measurements were performed in order to determine the crystalline structure of the resulting composite, while energy dispersive X-ray analysis (EDX) was used to evaluate the chemical composition of the synthesized material. The electrochemical studies were conducted using cyclic voltammetry (CV) and quasi-steady state polarization measurements carried out with an ultra thin layer rotating ring/disk electrode (RRDE) configuration. The electrocatalytic results obtained for 20% (w/w) Pt/C (E-TEK Inc., USA) and alpha-MnO2/C for the ORR, considered as one of the most active manganese oxide based catalyst for the ORR in alkaline media, were included for comparison. The RRDE results revealed that the ORR on the MnO2 catalysts proceeds preferentially through the complete 4e(-) reduction pathway via a 2 plus 2e(-) reduction process involving hydrogen peroxide as an intermediate. A benchmark close to the performance of 20% (w/w) Pt/C (E-TEK Inc., USA) was observed for the epsilon-MnO2/C material in the kinetic control region, superior to the performance of alpha-MnO2/C, but a higher amount of HO2- was obtained when epsilon-MnO2/C was used as catalyst. The higher production of hydrogen peroxide on epsilon-MnO2/C was related to the presence of structural defects, typical of this oxide, while the better catalytic performance in the kinetic control region compared to alpha-MnO2/C was related with the higher electrochemical activity for the proton insertion kinetics, which is a structure sensitive process. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Samples from sediment cores collected during the Swedish Deep-Sea Expedition 1947-1948 have been analyzed in the Geochemical laboratory of the Geological Survey of Sweden. Most samples were placed at our disposal by Professor Hans Pettersson, leader of the expedition mentioned. For complementary studies, samples from the Atlantic and Indian oceans were included in our investigation and the samples placed at our disposal by Professor B. Kullenberg, Göteborg. From the Tyrrhenian Sea we got samples from Professor E. Norin, Uppsala.
Resumo:
Deep-sea deposits, which resemble in nearly every respect the deep-sea oozes have been observed in many islands of the East-Indian Archipelago, notably the islands of Borneo, Rotti and Timor. Manganese nodules are found in equivalents of deeep-sea red clays on Timor and Rotti island. In this paper, those relative to red clay deposits dating from a Cretaceous ocean are analysed in detail in the vicinity of the town of Niki Niki in Western Timor.
Resumo:
Tungsten contents in iron-manganese nodules and crusts from different parts of the World Ocean, as well as its relationships with a number of chemical elements are under consideration. A trend to correlation of tungsten with Fe, Ti, W, Pb, and Co is noticed. Comparison of tungsten contents in the nodules and host sediments indicates its low geochemical mobility.
Resumo:
It is the purpose of this paper to record information concerning the distribution and occurrence of manganiferous concretions and other manganese oxide deposits that develop on certain lake bottoms. During the summer of 1935 several days were devoted to a study of this type of lake bottom deposit in various parts of Nova Scotia. Lake studies in Ontario have extended the known distribution from lakes on or near the Atlantic coast to lakes in southern Ontario. During the writer's first work on lacustrine manganiferous deposits the concretions of manganese oxide which were found were almost entirely limited to the relatively shallow parts of the lakes examined. Other lakes are now known where the manganese oxide appears to occur only in the maximum depths.
Resumo:
Interaction between young basaltic crust and seawater near the oceanic speading centers is one of the important processes affecting the chemical composition of the oceanic layer. The formation of metalliferous hydrothermal sediments results from this interaction. The importance of the interaction between seawater and basalt in determining the chemical composition of pore waters from sediments is well known. The influence of mineral solutions derived from this interaction on ocean water composition and the significant flux of some elements (e.g., Mn) are reported by Lyle (1976), Bogdanov et al. (1979), and others. Metal-rich sediments found in active zones of the ocean basins illustrate the influence of seawater-basalt interaction and its effect on the sedimentary cover in such areas. The role of hydrothermal activity and seawater circulation in basalts with regard to global geochemistry cycles has recently been demonstrated by Edmond, Measures, McDuff, McDuff et al. (1979), and Edmond, Measures, Mangum (1979). In the area of the Galapagos Spreading Center the interaction of sediments and solutions derived from interaction of seawater and basalt has resulted in the formation of hydrothermal mounds. The mounds are composed of manganese crusts and green clay interbedded and mixed with pelagic nannofossil ooze. These mounds are observed only in areas characterized by high heat flow (Honnorez, et al., 1981) and high hydrothermal activity.
Resumo:
A total of 32 holes at five sites near 1°N, 86°W drilled on Deep Sea Drilling Project (DSDP) Leg 70 (November- December 1979) provide unique data on the origin of the hydrothermal mounds on the southern flank of the Galapagos Spreading Center. Hydrothermal sediments, primarily Mn-oxide and nontronite, are restricted to the immediate vicinity of the mounds (< 100 m) and are probably formed by the interaction of upward-percolating hydrothermal solutions with seawater and pelagic sediments above locally permeable zones of ocean crust. Mounds as high as 25 meters form in less than a few hundred thousand years, and geothermal and geochemical gradients indicate that they are actively forming today. The lack of alteration of upper basement rocks directly below the mounds and throughout the Galapagos region indicates that the source of the hydrothermal solutions is deeper in the crust.
Resumo:
This report studies the principal paramters governing the distribution of iron-manganese concretions on the sea floor of the Indian Ocean, as well as their petrography and mineralogy. The results are mainly based on the recoveries made during voyages 31, 33 and 35 of the "Vityaz"' (1959-1962) and partly during voyages 36 and 41 (1964-1966). During these voyages samples of Mn concretions and Mn crust were collected (by bottom grabs, cores, trawlings, and dredgings) at 39 stations. The following account is devoted to the problems concerning the geochemistry of these concretions.
Resumo:
Detailed data obtained on chemistry of sedimentary rocks from the Mountainous Crimea and the Northwestern Caucasus that were dated at the Cenomanian/Turonian boundary and formed during Oceanic Anoxic Event 2 make it possible to calculate dissolved oxygen concentration in bottom waters of the sedimentation basin. Enrichment factors of trace elements in black shales are revised and an explanation is suggested for genesis of the rocks with regard for unusual climatic changes.
Resumo:
Sedimentation in the central Pacific during the Jurassic and Early Cretaceous was dominated by abundant biogenic silica. A synthesis of the stratigraphy, lithology, petrology, and geochemistry of the radiolarites in Sites 801 and 800 documents the sedimentation processes and trends in the equatorial central Pacific from the Middle Jurassic through the Early Cretaceous. Paleolatitude and paleodepth reconstructions enable comparisons with previous DSDP sites and identification of the general patterns of sedimentation over a wide region of the Pacific. Clayey radiolarites dominated sedimentation on Pacific oceanic crust within tropical paleolatitudes from at least the latest Bathonian through Tithonian. Radiolarian productivity rose to a peak within 5° of the paleoequator, where accumulation rates of biogenic silica exceeded 1000 g/cm**2/m.y. Wavy-bedded radiolarian cherts developed in the upper Tithonian at Site 801 coinciding with the proximity of this site to the paleoequator. Ribbon-bedding of some radiolarian cherts exposed on Pacific margins may have formed from silicification of radiolarite deposited near the equatorial high-productivity zone where radiolarian/clay ratios were high. Silicification processes in sediments extensively mixed by bioturbation or enriched in clay or carbonate generally resulted in discontinuous bands or nodules of porcellanite or chert, e.g., a "knobby" radiolarite. Ribbon-bedded cherts require primary alternations of radiolarian-rich and clay-rich layers as an initial structural template, coupled with abundant biogenic silica in both layers. During diagenesis, migration of silica from clay-rich layers leaves radiolarian "ghosts" or voids, and the precipitation in adjacent radiolarite layers results in silicification of the inter-radiolarian matrix and infilling of radiolarian tests. Alternations of claystone and clay-rich radiolarian grainstone were deposited during the Callovian at Site 801 and during the Berriasian-Valanginian at Site 800, but did not silicify to form bedded chert. Carbonate was not preserved on the Pacific oceanic floor or spreading ridges during the Jurassic, perhaps due to an elevated level of dissolved carbon dioxide. During the Berriasian through Hauterivian, the carbonate compensation depth (CCD) descended to approximately 3500 m, permitting the accumulation of siliceous limestones at near-ridge sites. Carbonate accumulation rates exceeded 1500 g/cm**2/m.y. at sites above the CCD, yet there is no evidence of an equatorial carbonate bulge during the Early Cretaceous. In the Barremian and Aptian, the CCD rose, coincident with the onset of mid-plate volcanic activity. Abundance of Fe and Mn and the associated formation of authigenic Fe-smectite clays was a function of proximity to the spreading ridges, with secondary enrichments occurring during episodes of spreading-center reorganizations. Callovian radiolarite at Site 801 is anomalously depleted in Mn, which resulted either from inhibited precipitation of Mn-oxides by lower pH of interstitial waters induced by high dissolved oceanic CO2 levels or from diagenetic mobilization of Mn. Influx of terrigenous (eolian) clay apparently changed with paleolatitude and geological age. Cyclic variations in productivity of radiolarians and of nannofossils and in the influx of terrigenous clay are attributed to Milankovitch climatic cycles of precession (20,000 yr) and eccentricity (100,000 yr). Diagenetic redistribution of biogenic silica and carbonate enhanced the expression of this cyclic sedimentation. Jurassic and Lower Cretaceous sediments were deposited under oxygenated bottom-water conditions at all depths, accompanied by bioturbation and pervasive oxidation of organic carbon and metals. Despite the more "equable" climate conditions of the Mesozoic, the super-ocean of the Pacific experienced adequate deep-water circulation to prevent stagnation. Efficient nutrient recycling may have been a factor in the abundance of radiolarians in this ocean basin.