929 resultados para MAIZE STARCH


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of maize (Zea mays L.) kernels depends on the availability of carbon (C) and nitrogen (N) assimilates supplied by the mother plant and the capacity of the kernel to use them. Our objectives were to study the effects of N and sucrose supply levels on growth and metabolism of maize kernels. Kernel explants of Pioneer 34RO6 were cultured in vitro with varying combinations of N (5 to 30 mM) and sucrose (117 to 467 mM). Maximum kernel growth was obtained with 10 mM N and 292 mM sucrose in the medium, and a deficiency of one assimilate could not be overcome by a sufficiency of the other. Increasing the N supply led to increases in the kernel sink capacity (number of cells and starch granules in the endosperm), activity of certain enzymes (soluble and bound invertases, sucrose synthase, and aspartate aminotransaminase), starch, and the levels of N compounds (total-N, soluble protein, and free amino acids), and decreased the levels of C metabolites (sucrose and reducing sugars). Conversely, increasing the sucrose supply increased the level of endosperm C metabolites, free amino acids, and ADPG-PPase and alanine transaminase activities, but decreased the activity of soluble invertase and concentrations of soluble protein and total-N. Thus, while C and N are interdependent and essential for accumulation of maximum kernel weight, they appear to regulate growth by different means. Nitrogen supply aids the establishment of kernel sink capacity, and promotes activity of enzymes relating to sucrose and nitrogen uptake, while sucrose regulates the activities df invertase and ADPG-PPase. (C) 1999 Annals of Botany Company.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although mineral nutrition affects maize (Zea mays L.) yield by controlling starch deposition in kernels, the mechanisms involved are largely unknown. Our objectives were to examine this relationship by nutritionally and genetically altering starch production in the endosperm. Kernels of W64A and two starch-deficient mutants, shrunken-1 and brittle-2, were grown in vitro with varying supplies of N (0-50 mM) or P (0-6 mM) to produce different degrees of endosperm starch production, and the levels of enzyme activities and metabolites associated with carbohydrate and N metabolism were examined. In vitro grown kernels exhibited the expected starch phenotypes, and a minimum level of media N (25 mM) and P (2 mM) was required for optimal growth. However, increasing the availability of N or P could not overcome the genetically induced decrease in starch deposition of the mutants. Nitrogen deficiency enhanced sugar accumulation, but decreased amino acid levels, soluble protein, enzyme activity, starch synthesis, and endosperm dry weight. Phosphorous deficiency also decreased starch production and endosperm dry weight, but with only a minimal effect on the activities of ADP-glucose pyrophosphorylase and alanine transaminase. Genotypic differences in endosperm starch, and the increases induced by N and P supply, Here closely associated with the level of endosperm N, but not endosperm P. Thus, while both N and P are crucial for optimal yield of maize grain, they appear to act by different means, and with different importance in governing starch deposition in the endosperm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yields and starch pasting characteristics obtained from wet milling of maize samples with low and high levels of defect grains were compared to those from sound samples. Defect grain groups ere established taking into account the defect degree. Thus the first group consisted of fermented, molded, heated and sprouted grains and the second of insect damaged. hollow, fermented (up to 1/4) grains and those injured by other causes. The grain groups, if present at low levels in the samples, 10% for first group and 17% for second group did not affect the chemical composition of starch and its pasting properties. obtained by the rapid visco analyser. Samples with high levels of grain groups (up to 100%). affected wet milling yields and starch viscosity. Samples with 100% of grains in the first group decreased starch, germ yield and peak viscosity and increased gluten yield. Samples with 100% of grains in the second group decreased germ and fiber yield but increased starch yield. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maize is one of the most important crops in the world. The products generated from this crop are largely used in the starch industry, the animal and human nutrition sector, and biomass energy production and refineries. For these reasons, there is much interest in figuring the potential grain yield of maize genotypes in relation to the environment in which they will be grown, as the productivity directly affects agribusiness or farm profitability. Questions like these can be investigated with ecophysiological crop models, which can be organized according to different philosophies and structures. The main objective of this work is to conceptualize a stochastic model for predicting maize grain yield and productivity under different conditions of water supply while considering the uncertainties of daily climate data. Therefore, one focus is to explain the model construction in detail, and the other is to present some results in light of the philosophy adopted. A deterministic model was built as the basis for the stochastic model. The former performed well in terms of the curve shape of the above-ground dry matter over time as well as the grain yield under full and moderate water deficit conditions. Through the use of a triangular distribution for the harvest index and a bivariate normal distribution of the averaged daily solar radiation and air temperature, the stochastic model satisfactorily simulated grain productivity, i.e., it was found that 10,604 kg ha(-1) is the most likely grain productivity, very similar to the productivity simulated by the deterministic model and for the real conditions based on a field experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature lability of ADP-glucose pyrophosphorylase (AGP; glucose-1-phosphate adenylyltransferase; ADP: α-d-glucose-1-phosphate adenylyltransferase, EC 2.7.7.27), a key starch biosynthetic enzyme, may play a significant role in the heat-induced loss in maize seed weight and yield. Here we report the isolation and characterization of heat-stable variants of maize endosperm AGP. Escherichia coli cells expressing wild type (WT) Shrunken2 (Sh2), and Brittle2 (Bt2) exhibit a reduced capacity to produce glycogen when grown at 42°C. Mutagenesis of Sh2 and coexpression with WT Bt2 led to the isolation of multiple mutants capable of synthesizing copious amounts of glycogen at this temperature. An increase in AGP stability was found in each of four mutants examined. Initial characterization revealed that the BT2 protein was elevated in two of these mutants. Yeast two-hybrid studies were conducted to determine whether the mutant SH2 proteins more efficiently recruit the BT2 subunit into tetramer assembly. These experiments showed that replacement of WT SH2 with the heat-stable SH2HS33 enhanced interaction between the SH2 and BT2 subunits. In agreement, density gradient centrifugation of heated and nonheated extracts from WT and one of the mutants, Sh2hs33, identified a greater propensity for heterotetramer dissociation in WT AGP. Sequencing of Sh2hs33 and several other mutants identified a His-to-Tyr mutation at amino acid position 333. Hence, a single point mutation in Sh2 can increase the stability of maize endosperm AGP through enhanced subunit interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study identified and purified specific isoamylase- and pullulanase-type starch-debranching enzymes (DBEs) present in developing maize (Zea mays L.) endosperm. The cDNA clone Zpu1 was isolated based on its homology with a rice (Oryza sativa L.) cDNA coding for a pullulanase-type DBE. Comparison of the protein product, ZPU1, with 18 other DBEs identified motifs common to both isoamylase- and pullulanase-type enzymes, as well as class-specific sequence blocks. Hybridization of Zpu1 to genomic DNA defined a single-copy gene, zpu1, located on chromosome 2. Zpu1 mRNA was abundant in endosperm throughout starch biosynthesis, but was not detected in the leaf or the root. Anti-ZPU1 antiserum specifically recognized the approximately 100-kD ZPU1 protein in developing endosperm, but not in leaves. Pullulanase- and isoamylase-type DBEs were purified from extracts of developing maize kernels. The pullulanase-type activity was identified as ZPU1 and the isoamylase-type activity as SU1. Mutations of the sugary1 (su1) gene are known to cause deficiencies of SU1 isoamylase and a pullulanase-type DBE. ZPU1 activity, protein level, and electrophoretic mobility were altered in su1-mutant kernels, indicating that it is the affected pullulanase-type DBE. The Zpu1 transcript levels were equivalent in nonmutant and su1-mutant kernels, suggesting that coordinated regulation of ZPU1 and SU1 occurs posttranscriptionally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waxy wheat (Triticum aestivum L.) lacks the waxy protein, which is also known as granule-bound starch synthase I (GBSSI). The starch granules of waxy wheat endosperm and pollen do not contain amylose and therefore stain red-brown with iodine. However, we observed that starch from pericarp tissue of waxy wheat stained blue-black and contained amylose. Significantly higher starch synthase activity was detected in pericarp starch granules than in endosperm starch granules. A granule-bound protein that differed from GBSSI in molecular mass and isoelectric point was detected in the pericarp starch granules but not in granules from endosperm. This protein was designated GBSSII. The N-terminal amino acid sequence of GBSSII, although not identical to wheat GBSSI, showed strong homology to waxy proteins or GBSSIs of cereals and potato, and contained the motif KTGGL, which is the putative substrate-binding site of GBSSI of plants and of glycogen synthase of Escherichia coli. GBSSII cross-reacted specifically with antisera raised against potato and maize GBSSI. This study indicates that GBSSI and GBSSII are expressed in a tissue-specific manner in different organs, with GBSSII having an important function in amylose synthesis in the pericarp.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amyloplasts of starchy tissues such as those of maize (Zea mays L.) function in the synthesis and accumulation of starch during kernel development. ADP-glucose pyrophosphorylase (AGPase) is known to be located in chloroplasts, and for many years it was generally accepted that AGPase was also localized in amyloplasts of starchy tissues. Recent aqueous fractionation of young maize endosperm led to the conclusion that 95% of the cellular AGPase was extraplastidial, but immunolocalization studies at the electron- and light-microscopic levels supported the conclusion that maize endosperm AGPase was localized in the amyloplasts. We report the results of two nonaqueous procedures that provide evidence that in maize endosperms in the linear phase of starch accumulation, 90% or more of the cellular AGPase is extraplastidial. We also provide evidence that the brittle-1 protein (BT1), an adenylate translocator with a KTGGL motif common to the ADP-glucose-binding site of starch synthases and bacterial glycogen synthases, functions in the transfer of ADP-glucose into the amyloplast stroma. The importance of the BT1 translocator in starch accumulation in maize endosperms is demonstrated by the severely reduced starch content in bt1 mutant kernels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Function of the maize (Zea mays) gene sugary1 (su1) is required for normal starch biosynthesis in endosperm. Homozygous su1- mutant endosperms accumulate a highly branched polysaccharide, phytoglycogen, at the expense of the normal branched component of starch, amylopectin. These data suggest that both branched polysaccharides share a common precursor, and that the product of the su1 gene, designated SU1, participates in kernel starch biosynthesis. SU1 is similar in sequence to α-(1→6) glucan hydrolases (starch-debranching enzymes [DBEs]). Specific antibodies were produced and used to demonstrate that SU1 is a 79-kD protein that accumulates in endosperm coincident with the time of starch biosynthesis. Nearly full-length SU1 was expressed in Escherichia coli and purified to apparent homogeneity. Two biochemical assays confirmed that SU1 hydrolyzes α-(1→6) linkages in branched polysaccharides. Determination of the specific activity of SU1 toward various substrates enabled its classification as an isoamylase. Previous studies had shown, however, that su1- mutant endosperms are deficient in a different type of DBE, a pullulanase (or R enzyme). Immunoblot analyses revealed that both SU1 and a protein detected by antibodies specific for the rice (Oryza sativa) R enzyme are missing from su1- mutant kernels. These data support the hypothesis that DBEs are directly involved in starch biosynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maize (Zea mays L.) plants were grown to the nine-leaf stage. Despite a saturating N supply, the youngest mature leaves (seventh position on the stem) contained little NO3− reserve. Droughted plants (deprived of nutrient solution) showed changes in foliar enzyme activities, mRNA accumulation, photosynthesis, and carbohydrate and amino acid contents. Total leaf water potential and CO2 assimilation rates, measured 3 h into the photoperiod, decreased 3 d after the onset of drought. Starch, glucose, fructose, and amino acids, but not sucrose (Suc), accumulated in the leaves of droughted plants. Maximal extractable phosphoenolpyruvate carboxylase activities increased slightly during water deficit, whereas the sensitivity of this enzyme to the inhibitor malate decreased. Maximal extractable Suc phosphate synthase activities decreased as a result of water stress, and there was an increase in the sensitivity to the inhibitor orthophosphate. A correlation between maximal extractable foliar nitrate reductase (NR) activity and the rate of CO2 assimilation was observed. The NR activation state and maximal extractable NR activity declined rapidly in response to drought. Photosynthesis and NR activity recovered rapidly when nutrient solution was restored at this point. The decrease in maximal extractable NR activity was accompanied by a decrease in NR transcripts, whereas Suc phosphate synthase and phosphoenolpyruvate carboxylase mRNAs were much less affected. The coordination of N and C metabolism is retained during drought conditions via modulation of the activities of Suc phosphate synthase and NR commensurate with the prevailing rate of photosynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The maize endosperm-specific gene shrunken2 (Sh2) encodes the large subunit of the heterotetrameric starch synthetic enzyme adenosine diphosphoglucose pyrophosphorylase (AGP; EC 2.7.7.27). Here we exploit an in vivo, site-specific mutagenesis system to create short insertion mutations in a region of the gene known to be involved in the allosteric regulation of AGP. The site-specific mutagen is the transposable element dissociation (Ds). Approximately one-third (8 of 23) of the germinal revertants sequenced restored the wild-type sequence, whereas the remaining revertants contained insertions of 3 or 6 bp. All revertants retained the original reading frame 3' to the insertion site and involved the addition of tyrosine and/or serine. Each insertion revertant reduced total AGP activity and the amount of the SH2 protein. The revertant containing additional tyrosine and serine residues increased seed weight 11-18% without increasing or decreasing the percentage of starch. Other insertion revertants lacking an additional serine reduced seed weight. Reduced sensitivity to phosphate, a long-known inhibitor of AGP, was found in the high seed-weight revertant. This alteration is likely universally important since insertion of tyrosine and serine in the potato large subunit of AGP at the comparable position and expression in Escherichia coli also led to a phosphate-insensitive enzyme. These results show that single gene mutations giving rise to increased seed weight, and therefore perhaps yield, are clearly possible in a plant with a long history of intensive and successful breeding efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing interests in the use of starch as biodegradable plastic materials demand, amongst others, accurate information on thermal properties of starch systems particularly in the processing of thermoplastic starch (TPS), where plasticisers (water and glycerol) are added. The specific heat capacity of starch-water-glycerol mixtures was determined within a temperature range of 40-120degreesC. A modulated temperature differential scanning calorimeter (MTDSC) was employed and regression equations were obtained to predict the specific heat capacity as a function of temperature, water and glycerol content for four maize starches of differing amylose content (0 - 85%). Generally, temperature and water content are directly proportional to the specific heat capacity of the systems, but the influence of glycerol content on the thermal property varied according to the starch type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either ‘Landraces’ or ‘Wild and Weedy’ genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.