921 resultados para Método da média (Equações diferenciais)
Resumo:
A ciência moderna apresentou significativo avanço a partir do desenvolvimento da análise diferencial. A transformação de equações diferenciais de alta ordem em sistemas de equações algébricas foi possível através do desenvolvimento de métodos numéricos, constituindo este, outro grande avanço. Dentro desses pode-se destacar os métodos de diferenças finitas, dos elementos finitos, dos elementos discretos e mais recentemente, os elementos de contorno. Neste trabalho, faz-se uma contribuição ao desenvolvimento do Método dos Elementos Discretos para aplicações na Mecânica do Contínuo, na Mecânica da Fratura, assim como na determinação do dano em elementos estruturais submetidos a cargas. Neste método, a discretização espacial no modelo se realiza mediante um conjunto de massas ligadas entre se por forças materializadas como um arranjo de barras de treliça com rigidez equivalente ao contínuo que se quer representar, e mediante um esquema de integração explícita, se realiza a integração das equações de movimento no tempo. Verifica-se a validade e a capacidade do método em predizer o efeito de tamanho em elementos de concreto e concreto armado, obtendo-se uma excelente correlação com ensaios encontrados na literatura técnica, além de importantes conclusões a respeito da aplicação de cargas estáticas e dinâmicas, tanto em padrões de fissuração ou ruptura, quanto aos valores limites de resistência dos materiais ou cargas aplicadas, dando-se importância na geração aleatória das propriedades dos materiais mediante o uso do Método de Representação Espectral.
Resumo:
A paralelização de métodos de resolução de sistemas de equações lineares e não lineares é uma atividade que tem concentrado várias pesquisas nos últimos anos. Isto porque, os sistemas de equações estão presentes em diversos problemas da computação cientí ca, especialmente naqueles que empregam equações diferenciais parciais (EDPs) que modelam fenômenos físicos, e que precisam ser discretizadas para serem tratadas computacionalmente. O processo de discretização resulta em sistemas de equações que necessitam ser resolvidos a cada passo de tempo. Em geral, esses sistemas têm como características a esparsidade e um grande número de incógnitas. Devido ao porte desses sistemas é necessária uma grande quantidade de memória e velocidade de processamento, sendo adequado o uso de computação de alto desempenho na obtenção da solução dos mesmos. Dentro desse contexto, é feito neste trabalho um estudo sobre o uso de métodos de decomposição de domínio na resolução de sistemas de equações em paralelo. Esses métodos baseiam-se no particionamento do domínio computacional em subdomínios, de modo que a solução global do problema é obtida pela combinação apropriada das soluções de cada subdomínio. Uma vez que diferentes subdomínios podem ser tratados independentemente, tais métodos são atrativos para ambientes paralelos. Mais especi camente, foram implementados e analisados neste trabalho, três diferentes métodos de decomposição de domínio. Dois desses com sobreposição entre os subdomínios, e um sem sobreposição. Dentre os métodos com sobreposição foram estudados os métodos aditivo de Schwarz e multiplicativo de Schwarz. Já dentre os métodos sem sobreposição optou-se pelo método do complemento de Schur. Todas as implementações foram desenvolvidas para serem executadas em clusters de PCs multiprocessados e estão incorporadas ao modelo HIDRA, que é um modelo computacional paralelo multifísica desenvolvido no Grupo de Matemática da Computação e Processamento de Alto Desempenho (GMCPAD) para a simulação do escoamento e do transporte de substâncias em corpos de águas.
Resumo:
Neste trabalho e apresentado um avanço na tecnica GILTT(Generalized Integral and Laplace Transform Technique) solucionando analiticamente um sistema de EDO's(Equações Diferenciais Ordinarias) de segunda ordem resultante da transformação pela GITT(Generalized Integral Transform Technique). Este tipo de problema usualmente aparece quando esta tecnica é aplicada na solução de problemas bidimensionais estacionários. A principal idéia consiste na redução de ordem do problema transformado em outro sistema de EDO's lineares de primeira ordem e a solução analítica deste problema, pela técnica da transformada de Laplace. Como exemplo de aplicação é resolvida a equação da energia linear bidimensional e estacionária. São apresentadas simulações numéricas e comparações com resultados disponíveis na literatura.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Neste trabalho, é desenvolvido um método de localização de descargas parciais, em transformadores de potência, baseado no algoritmo GPS (Global Positioning System). Para a análise da estrutura, foi desenvolvido um solftware, no qual as equações diferenciais que representam a propagação de ondas acústicas são resolvidas numericamente através do método Acoustic Finite Difference Time Domain (AFDTD), cujo domínio computacional é truncado através da técnica CPML (Convolutional Perfectly Matched Layer). Os resultados obtidos são comparados a estimativas produzidas utilizando-se sinais elétricos relativos às descargas.