980 resultados para Méthode de Runge-Kutta
Resumo:
The nonlinear free surface amplitude equation, which has been derived from the inviscid fluid by solving the potential equation of water waves with a singular perturbation theory in a vertically oscillating rigid circular cylinder, is investigated successively in the fourth-order Runge-Kutta approach with an equivalent time-step. Computational results include the evolution of the amplitude with time, the characteristics of phase plane determined by the real and imaginary parts of the amplitude, the single-mode selection rules of the surface waves in different forced frequencies, contours of free surface displacement and corresponding three-dimensional evolution of surface waves, etc. In addition, the comparison of the surface wave modes is made between theoretical calculations and experimental measurements, and the results are reasonable although there are some differences in the forced frequency.
Resumo:
A new numerical method for solving the axisymmetric unsteady incompressible Navier-Stokes equations using vorticity-velocity variables and a staggered grid is presented. The solution is advanced in time with an explicit two-stage Runge-Kutta method. At each stage a vector Poisson equation for velocity is solved. Some important aspects of staggering of the variable location, divergence-free correction to the velocity held by means of a suitably chosen scalar potential and numerical treatment of the vorticity boundary condition are examined. The axisymmetric spherical Couette flow between two concentric differentially rotating spheres is computed as an initial value problem. Comparison of the computational results using a staggered grid with those using a non-staggered grid shows that the staggered grid is superior to the non-staggered grid. The computed scenario of the transition from zero-vortex to two-vortex flow at moderate Reynolds number agrees with that simulated using a pseudospectral method, thus validating the temporal accuracy of our method.
Resumo:
基于双流体模型,在一定假设的条件下推导得到了用于描述变截面床流化过程的局部平衡模型。对于局部平衡模型,空间导数项的离散采用五阶精度的WENO有限差分格式,时间导数项的离散采用TVD Runge-Kutta型的离散格式,对流量突变后的瞬态过程进行了模拟,得到固相体积分数在整个变化过程中沿床高的分布以及床高变化规律和床层表面颗粒速度变化曲线。对于流量突增过程,在床内不同位置形成了一系列的连续波,当所有的连续波到达床面整个变化过程结束。而对于流量突然减小过程,将会有固相体积分数间断在分布板处形成,当所有间断到达床面时,塌落过程结束。
Resumo:
采用高精度差分方法对来流马赫数0.7,来流Reynolds数250000/Inch,锥角为20°的尖锥边界层的整个空间转捩过程进行了直接数值模拟.对流项采用了7阶迎风格式离散,黏性项采用6阶中心格式离散,时间推进为3阶Runge-Kutta方法.对转捩形成的充分发展湍流进行了统计分析,包括平均速度分布,近壁湍流强度和雷诺应力等统计数据与平板边界层理论及实验吻合很好,验证了结果的正确性.显示了近壁湍流的典型拟序结构——高、低速条带结构并根据流向速度的周向相关量确定了条带的间距,以当地壁面尺度度量的条带间距沿流向并没有显著变化.给出了柱坐标下的可压湍动能发展方程,并据此对近壁湍动能的生成、耗散和输运机制进行了分析.
Resumo:
应用高灵敏度的力传感器以及时间序列电子散斑干涉法,同时测出了不同厚度纯镍薄片三点弯曲试件的抗力与变形,得到薄梁中心点处的载荷与挠度曲线.应用Fleck和Hutchinson的偶应力理论,结合平面应变弯曲模型,建立了薄梁处于弹性状态和弹塑性状态的控制方程,应用Runge-Kutta法进行数值求解,并将计算得到的载荷-挠度曲线以及无量纲化弯矩-表面应变曲线和实验结果进行了比较.在理论计算过程中,没有拟合任何材料参数,所有的材料参数均来自实验测量的结果,材料特征尺度也是根据Stolken和Evans的工作给出的.结果表明:应用偶应力理论预测的结果和实验结果符合良好,而经典理论的预测结果与实验不相符合.
Resumo:
介绍了关于蒸汽-冷流体直接接触冷凝流动与传热的数值计算模型与部分研究结果。用Level Set方法确定蒸汽-冷流体接触界面的位置和形状,建立了对蒸汽和冷流体普遍适用的动量、能量和质量守恒方程,在能量和质量寺恒方程中增加了部分项用于计算蒸汽冷凝所产生的影响。用有限差分法在交错网格上离散控制方程,用Runge-Kutta法-五阶WENO组合格式求解Level Set输运方程,用压力修正的迭代Projection方法求解动量方程,而用SIMPLE方法求解温度控制方程。对算例的计算结果表明,本文所建立的数值计算模型能反映物理现象的宏观特性。根据计算结果,分析了本文模型的优缺点,并指出了今后改进的方向。
Resumo:
报道了关于不相溶流体层间界面波演化规律的数值模拟研究及结果,重点考察了重力条件对界面波演化特性的影响。考虑在深度方向无限扩展的互不相容的两个流体层,上层流体比下层的轻,但比下层的运动速度快;两层流体间的界面上存在正弦波形的初始扰动,并随流体流动而不断变化。本文采用Level Set方法来实现对运动的相界面的追踪,用有限差分法来离散控制方程组。为了提高数值算法的稳定性,采用三阶的Runge-Kutta法来离散时间导数,而采用五阶的WENO(Weighted Essentially Non-oscillatory)格式来离散一阶对流输运项,并用压力修正投影法(Pressure Correction Projection Method)来实现离散控制方程组的求解。为了提高对复杂非稳态过程的解的准确度,采用了嵌套的三层迭代循环。本文对一系列工况条件下的界面波演化过程进行了计算;除了研究重力的作用之外,还考察了流体密度、粘性、表面张力、初始界面波频率、振幅及波数对界面波演化特性的影响。其中,上下流体层的最大密度比和粘性比可达3000/1,而重力加速度在0~5g0(g0=9.8m/s^2)之间变化,上下流体层间的最大速度差为8m/s。研究结果表明,随着重力、流体密度比、流体粘性比及表面张力的增加,界面波的演化受到不同程度的抑制,而界面波的传播速度也与重力及流体的密度、粘性和表面张力等因素相关。
Resumo:
本文针对带椭球封头的爆炸容器,黑索今(RDX)在中心处的爆炸用点爆炸模型描述,利用四阶Runge-Kutta法求解一组常微分方程得到爆炸近场的自相似解。采用有限体积形式的PPM格式求解轴对称Euler方程,得到了容器内冲击波传播及其演化的图象。以计算得到的冲击载荷为基础,修改HONDO程序,壳体弹塑性模型采用J_2流动理论描述。对冲击波和壳体的耦合作用进行了初步的数值研究。计算结果表明:容器内爆炸冲击波和壳体中应力波的传播及其演化与物理上的定性分析结果是一致的。由于应力波传播速度较冲击波快,因此,在冲击波未到达的静止流场,流场出现扰动声波,并向中心传播。封头顶点附近出现最大变形。在中等载荷作用下,可忽略壳体变形对流场的影响。
Resumo:
气动声学是一门流动力学和声学之间的交叉学科,主要研究流动及其与物体相互作用产生噪声的机理。动用计算技术研究气动声学问题的手段称为计算气动声学。本文的目的是,基于高精度数值算法的研究,分别运用Lighthill比拟理论、Kirchhoff积分和直接数值模拟等方法,针对翼型绕流、激波-涡干扰和轴对称射流,研究了物面非定常脉动压力、涡脱落、激波-涡干扰以及涡对并等产生噪声的机理。首先针对声场与主流场在能级和特征尺度等方面的差异,从空间离散角度分析了几种差分格式,表明迎风紧致格式/对称紧致格式有较小的数值色散、耗散和各向异性误差,因而适用于气动噪声的计算。以Runge-Kutta格式为例,对时间离散带来的误差进行了分析。指出对声波计算来说,仅考虑格式稳定性是不够的,时间步长还受到允许色散误差和耗散误差的限制。基于保色戎关系的思想,构造了优化Runge-Kutta格式。处例显示优化Runge-Kutta格式相对于经典格式有更高的计算效率。采用3阶迎风紧致格式和3阶Runge-Kutta格式数值模拟了NACA0012翼型的可压缩非定常绕流流场,并将此流场作为近场声源,运用声学比拟理论对偶极子声和四极子声进行研究。结果指出,主流速度对远场声压有决定性影响,在来流马赫数较大时,四极子噪声和偶极子噪声具有相同量级,不能被忽略,表明了可压缩效应对声场的影响。采用5阶迎风紧致格式和4阶Runge-Kutta格式求解非定常可压缩Navier-Stokes方程,对激波-单涡/双涡干扰导致的声场进行了直接数值模拟。详细研究了激波-涡干扰产生噪声的机理,指出噪声的产生及其性质和激波变形密切相关。研究了近场噪声衰减和传播距离r的关系,发现噪声衰减大致和r~(4/5)而不是r~(1/2)成反比关系,提出这种差异是由流场的非线性效应引起的。构造了Kirchhoff积分和非定常流动计算相结合的算法。采用5阶迎风紧致格式和3阶Runge-Kutta格式对亚声速轴对称射流进行直接数值模拟。将射流流场作为近场声源,结合Kirchhoff方法求解远场 气动噪声。数值结果表明远场噪声具有方向性,噪声声压在离开对称轴20°处达到最大值。随着传播距离增大,噪声方向性逐渐减弱。
Resumo:
This is the first part of direct numerical simulation (DNS) of double-diffusive convection in a slim rectangular enclosure with horizontal temperature and concentration gradients. We consider the case with the thermal Rayleigh number of 10^5, the Pradtle number of 1, the Lewis number of 2, the buoyancy ratio of composition to temperature being in the range of [0,1], and height-to-width aspect ration of 4. A new 7th order upwind compact scheme was developed for approximation of convective terms, and a three-stage third-order Runge-Kutta method was employed for time advancement. Our DNS suggests that with the buoyancy ratio increasing form 0 to 1, the flow of transition is a complex series changing fromthe steady to periodic, chaotic, periodic, quasi-periodic, and finally back to periodic. There are two types of periodic flow, one is simple periodic flow with single fundamental frequency (FF), and another is complex periodic flow with multiple FFs. This process is illustrated by using time-velocity histories, Fourier frequency spectrum analysis and the phase-space rajectories.
Resumo:
对颗粒相采用颗粒轨道模型,气相求解可压缩N-S方程组,计算方法采用显式Runge-Kutta时间推进法与有总变差衰减(TVD)性质的高精度MUSCL-Roe格式;自主开发了曲线坐标系下二维轴对称可压缩N-S方程组的解算器Solve2D,研究了固体火箭发动机喷管中颗粒相对流场的影响以及不同尺寸颗粒运动规律.结果表明:颗粒相对流场的影响主要表现在喷管喉部以及扩张段,和单相流场相比,沿轴线马赫数减小,且颗粒尺寸越小减少得越多;沿轴线气相温度升高,且颗粒尺寸越小温度升高越多;颗粒尺寸越小,无粒子区越小;颗粒越大与收缩段壁面碰撞越剧烈,无粒子区越大.
Resumo:
Moving mesh methods (also called r-adaptive methods) are space-adaptive strategies used for the numerical simulation of time-dependent partial differential equations. These methods keep the total number of mesh points fixed during the simulation, but redistribute them over time to follow the areas where a higher mesh point density is required. There are a very limited number of moving mesh methods designed for solving field-theoretic partial differential equations, and the numerical analysis of the resulting schemes is challenging. In this thesis we present two ways to construct r-adaptive variational and multisymplectic integrators for (1+1)-dimensional Lagrangian field theories. The first method uses a variational discretization of the physical equations and the mesh equations are then coupled in a way typical of the existing r-adaptive schemes. The second method treats the mesh points as pseudo-particles and incorporates their dynamics directly into the variational principle. A user-specified adaptation strategy is then enforced through Lagrange multipliers as a constraint on the dynamics of both the physical field and the mesh points. We discuss the advantages and limitations of our methods. The proposed methods are readily applicable to (weakly) non-degenerate field theories---numerical results for the Sine-Gordon equation are presented.
In an attempt to extend our approach to degenerate field theories, in the last part of this thesis we construct higher-order variational integrators for a class of degenerate systems described by Lagrangians that are linear in velocities. We analyze the geometry underlying such systems and develop the appropriate theory for variational integration. Our main observation is that the evolution takes place on the primary constraint and the 'Hamiltonian' equations of motion can be formulated as an index 1 differential-algebraic system. We then proceed to construct variational Runge-Kutta methods and analyze their properties. The general properties of Runge-Kutta methods depend on the 'velocity' part of the Lagrangian. If the 'velocity' part is also linear in the position coordinate, then we show that non-partitioned variational Runge-Kutta methods are equivalent to integration of the corresponding first-order Euler-Lagrange equations, which have the form of a Poisson system with a constant structure matrix, and the classical properties of the Runge-Kutta method are retained. If the 'velocity' part is nonlinear in the position coordinate, we observe a reduction of the order of convergence, which is typical of numerical integration of DAEs. We also apply our methods to several models and present the results of our numerical experiments.
Resumo:
研究了非挥发全息记录中南于紫外光的强吸收而引起的光栅非均匀性,分析了这种非均匀性对光栅衍射效率的影响。结果显示,非均匀性致使光折变光栅的平均强度减弱,衍射效率降低。提出了采用两束等光强的敏化紫外光由晶体两侧入射的优化方案以改善光栅的均匀性,提高光栅的衍射效率。通过联立两中心带输运物质方程和双光束耦合波方程,进行了相应的理论模拟,并给出实验验证。结果表明双侧紫外光照射能够实现均匀性较好的光栅,是提高衍射效率的有效途径之一。
Resumo:
We propose a united theory that describes the two-center recording system by taking scattering noise into account. The temporal evolution of the signal-to-noise ratio in doubly doped photorefractive crystals is described based on jointly solving material equations and coupled-wave equations with the fourth-order Runge-Kutta method. Roles of microcosmic optical parameters of dopants on the signal-to-noise ratio are discussed in detail. The theoretical results can confirm and predict experimental results. (c) 2005 Elsevier GmbH. All rights reserved.