938 resultados para Lung mechanics
Resumo:
Aims: To develop clinical protocols for acquiring PET images, performing CT-PET registration and tumour volume definition based on the PET image data, for radiotherapy for lung cancer patients and then to test these protocols with respect to levels of accuracy and reproducibility. Method: A phantom-based quality assurance study of the processes associated with using registered CT and PET scans for tumour volume definition was conducted to: (1) investigate image acquisition and manipulation techniques for registering and contouring CT and PET images in a radiotherapy treatment planning system, and (2) determine technology-based errors in the registration and contouring processes. The outcomes of the phantom image based quality assurance study were used to determine clinical protocols. Protocols were developed for (1) acquiring patient PET image data for incorporation into the 3DCRT process, particularly for ensuring that the patient is positioned in their treatment position; (2) CT-PET image registration techniques and (3) GTV definition using the PET image data. The developed clinical protocols were tested using retrospective clinical trials to assess levels of inter-user variability which may be attributed to the use of these protocols. A Siemens Somatom Open Sensation 20 slice CT scanner and a Philips Allegro stand-alone PET scanner were used to acquire the images for this research. The Philips Pinnacle3 treatment planning system was used to perform the image registration and contouring of the CT and PET images. Results: Both the attenuation-corrected and transmission images obtained from standard whole-body PET staging clinical scanning protocols were acquired and imported into the treatment planning system for the phantom-based quality assurance study. Protocols for manipulating the PET images in the treatment planning system, particularly for quantifying uptake in volumes of interest and window levels for accurate geometric visualisation were determined. The automatic registration algorithms were found to have sub-voxel levels of accuracy, with transmission scan-based CT-PET registration more accurate than emission scan-based registration of the phantom images. Respiration induced image artifacts were not found to influence registration accuracy while inadequate pre-registration over-lap of the CT and PET images was found to result in large registration errors. A threshold value based on a percentage of the maximum uptake within a volume of interest was found to accurately contour the different features of the phantom despite the lower spatial resolution of the PET images. Appropriate selection of the threshold value is dependant on target-to-background ratios and the presence of respiratory motion. The results from the phantom-based study were used to design, implement and test clinical CT-PET fusion protocols. The patient PET image acquisition protocols enabled patients to be successfully identified and positioned in their radiotherapy treatment position during the acquisition of their whole-body PET staging scan. While automatic registration techniques were found to reduce inter-user variation compared to manual techniques, there was no significant difference in the registration outcomes for transmission or emission scan-based registration of the patient images, using the protocol. Tumour volumes contoured on registered patient CT-PET images using the tested threshold values and viewing windows determined from the phantom study, demonstrated less inter-user variation for the primary tumour volume contours than those contoured using only the patient’s planning CT scans. Conclusions: The developed clinical protocols allow a patient’s whole-body PET staging scan to be incorporated, manipulated and quantified in the treatment planning process to improve the accuracy of gross tumour volume localisation in 3D conformal radiotherapy for lung cancer. Image registration protocols which factor in potential software-based errors combined with adequate user training are recommended to increase the accuracy and reproducibility of registration outcomes. A semi-automated adaptive threshold contouring technique incorporating a PET windowing protocol, accurately defines the geometric edge of a tumour volume using PET image data from a stand alone PET scanner, including 4D target volumes.
Resumo:
Presentation about information modelling and artificial intelligence, semantic structure, cognitive processing and quantum theory.
Resumo:
Continuum mechanics provides a mathematical framework for modelling the physical stresses experienced by a material. Recent studies show that physical stresses play an important role in a wide variety of biological processes, including dermal wound healing, soft tissue growth and morphogenesis. Thus, continuum mechanics is a useful mathematical tool for modelling a range of biological phenomena. Unfortunately, classical continuum mechanics is of limited use in biomechanical problems. As cells refashion the �bres that make up a soft tissue, they sometimes alter the tissue's fundamental mechanical structure. Advanced mathematical techniques are needed in order to accurately describe this sort of biological `plasticity'. A number of such techniques have been proposed by previous researchers. However, models that incorporate biological plasticity tend to be very complicated. Furthermore, these models are often di�cult to apply and/or interpret, making them of limited practical use. One alternative approach is to ignore biological plasticity and use classical continuum mechanics. For example, most mechanochemical models of dermal wound healing assume that the skin behaves as a linear viscoelastic solid. Our analysis indicates that this assumption leads to physically unrealistic results. In this thesis we present a novel and practical approach to modelling biological plasticity. Our principal aim is to combine the simplicity of classical linear models with the sophistication of plasticity theory. To achieve this, we perform a careful mathematical analysis of the concept of a `zero stress state'. This leads us to a formal de�nition of strain that is appropriate for materials that undergo internal remodelling. Next, we consider the evolution of the zero stress state over time. We develop a novel theory of `morphoelasticity' that can be used to describe how the zero stress state changes in response to growth and remodelling. Importantly, our work yields an intuitive and internally consistent way of modelling anisotropic growth. Furthermore, we are able to use our theory of morphoelasticity to develop evolution equations for elastic strain. We also present some applications of our theory. For example, we show that morphoelasticity can be used to obtain a constitutive law for a Maxwell viscoelastic uid that is valid at large deformation gradients. Similarly, we analyse a morphoelastic model of the stress-dependent growth of a tumour spheroid. This work leads to the prediction that a tumour spheroid will always be in a state of radial compression and circumferential tension. Finally, we conclude by presenting a novel mechanochemical model of dermal wound healing that takes into account the plasticity of the healing skin.
Resumo:
Recently, the numerical modelling and simulation for fractional partial differential equations (FPDE), which have been found with widely applications in modern engineering and sciences, are attracting increased attentions. The current dominant numerical method for modelling of FPDE is the explicit Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings. This paper aims to develop an implicit meshless approach based on the radial basis functions (RBF) for numerical simulation of time fractional diffusion equations. The discrete system of equations is obtained by using the RBF meshless shape functions and the strong-forms. The stability and convergence of this meshless approach are then discussed and theoretically proven. Several numerical examples with different problem domains are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. The results obtained by the meshless formations are also compared with those obtained by FDM in terms of their accuracy and efficiency. It is concluded that the present meshless formulation is very effective for the modelling and simulation for FPDE.
Resumo:
Objective: To assess the efficacy of maternal betamethasone for improving preterm lung function, in the presence of inflammation induced by amniotic fluid ureaplasma colonization. ----- ----- Study design: Ewes bearing single fetuses were randomized to receive an intra-amniotic injection of Ureaplasma parvum (serovar 6; 2×107 colony forming units) or vehicle at 86±2 days of pregnancy (mean±SD: term is 150d), followed by maternal intramuscular betamethasone (0.5mg/kg) or saline, either 2 or 7 days before delivery of lambs at 123±1d. ----- ----- Results: Amniotic fluid IL-8 was elevated by ureaplasmas (p=0.049) but unaffected by betamethasone. Lung inflammation induced by ureaplasmas was not affected by betamethasone. Lung compliance was increased by ureaplasma colonization (p=0.009) and betamethasone (p=0.042), and effects were additive. Lung surfactant was increased by ureaplasma colonization (p<0.001) and betamethasone 7 days (p=0.001), but not 2 days, before delivery. ----- ----- Conclusion: Inflammation improves preterm lung function due to increases in surfactant. Antenatal corticosteroids further augment lung function, through an apparently independent mechanism.
Resumo:
Purpose: To examine the impact of different endotracheal tube (ETT) suction techniques on regional end-expiratory lung volume (EELV) and tidal volume (VT) in an animal model of surfactant-deficient lung injury. Methods: Six 2-week old piglets were intubated (4.0 mm ETT), muscle-relaxed and ventilated, and lung injury was induced with repeated saline lavage. In each animal, open suction (OS) and two methods of closed suction (CS) were performed in random order using both 5 and 8 French gauge (FG) catheters. The pre-suction volume state of the lung was standardised on the inflation limb of the pressure-volume relationship. Regional EELV and VT expressed as a proportion of the impedance change at vital capacity (%ZVCroi) within the anterior and posterior halves of the chest were measured during and for 60 s after suction using electrical impedance tomography. Results: During suction, 5 FG CS resulted in preservation of EELV in the anterior (nondependent) and posterior(dependent) lung compared to the other permutations, but these only reached significance in the anterior regions (p\0.001 repeated-measures ANOVA). VT within the anterior, but not posterior lung was significantly greater during 5FG CS compared to 8 FG CS; the mean difference was 15.1 [95% CI 5.1, 25.1]%ZVCroi. Neither catheter size nor suction technique influenced post-suction regional EELV or VT compared to pre-suction values (repeated-measures ANOVA). Conclusions: ETT suction causes transient loss of EELV and VT throughout the lung. Catheter size exerts a greater influence than suction method, with CS only protecting against derecruitment when a small catheter is used, especially in the non-dependent lung.
Resumo:
We review the literature on the combined effect of asbestos exposure and smoking on lung cancer, and explore a Bayesian approach to assess evidence of interaction. Previous approaches have focussed on separate tests for an additive or multiplicative relation. We extend these approaches by exploring the strength of evidence for either relation using approaches which allow the data to choose between both models. We then compare the different approaches.
Resumo:
Background Total hip arthroplasty carried out using cemented modular-neck implants provides the surgeon with greater intra-operative flexibility and allows more controlled stem positioning. Methods In this study, finite element models of a whole femur implanted with either the Exeter or with a new cemented modular-neck total hip arthroplasty (separate, neck and stem components) were developed. The changes in bone and cement mantle stress/strain were assessed for varying amounts of neck offset and version angle for the modular-neck device for two simulated physiological load cases: walking and stair climbing. Since the Exeter is the gold standard for polished cemented total hip arthroplasty stem design, bone and cement mantle stresses/strains in the modular-neck finite element models were compared with finite element results for the Exeter. Findings For the two physiological load cases, stresses and strains in the bone and cement mantle were similar for all modular-neck geometries. These results were comparable to the bone and cement mechanics surrounding the Exeter. These findings suggest that the Exeter and the modular neck device distribute stress to the surrounding bone and cement in a similar manner. Interpretation It is anticipated that the modular-neck device will have a similar short-term clinical performance to that of the Exeter, with the additional advantages of increased modularity.