978 resultados para Luminescence dating (OSL)
Resumo:
Barrier development during the Holocene is studied using the example of the Ilha Comprida, Southeastern Brazil. Aerial photos, facies analysis, and optically stimulated luminescence dating are used to define the barrier emergence and evolution. Optically stimulated luminescence ages and facies successions indicate that the Ilha Comprida probably began as a Holocene transgressive barrier island 6000 years ago, just before the last relative sea-level maximum. Since then the barrier has progradated through the addition of curved beach ridges. Based on beach ridge alignments, six units of growth are identified with two growth directions, transverse and longitudinal. Rates of progradation with transverse growth vary from 0.13 to 4.6 m/year. Rates of longitudinal growth to NE range from 5.2 to 30 m/year. Variation in coastal progradation rates and sediment retention during the last 6000 years is compared with climate, physiography and relative sea-level changes. The physiography, represented by pre-Cenozoic hills, is the major control on sediment retention and alternation between longitudinal and transverse growth. Climate variations, such as the Little Ice Age event, apparently control the formation of ridges types: beach ridges, foredunes, and blowouts. These results allow the use of the Ilha Comprida Barrier as an example to analyze the major controls on barriers progradation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Diepkloof Rock Shelter offers an exceptional opportunity to study the onset and evolution of both Still Bay (SB) and Howiesons Poort (HP) techno-complexes. However, previous age estimates based on luminescence dating of burnt quartzites (Tribolo et al., 2009) and of sediments (Jacobs et al., 2008) were not in agreement. Here, we present new luminescence ages for 17 rock samples (equivalent dose estimated with a SAR-ITL protocol instead of classical MAAD-TL) as well as for 5 sediment samples (equivalent dose estimated with SAR-single grain OSL protocol) and an update of the 22 previous age estimates for burnt lithics (modified calibration and beta dose estimates). While a good agreement between the rock and sediment ages is obtained, these estimates are still significantly older than those reported by Jacobs et al. (2008). After our own analyses of the sediment from Diepkloof, it is suspected that these authors did not correctly chose the parameters for the equivalent dose determination, leading to an underestimate of the equivalent doses, and thus of the ages. From bottom to top, the mean ages are 100 ± 10 ka for stratigraphic unit (SU) Noël and 107 ± 11 ka for SU Mark (uncharacterized Lower MSA), 100 ± 10 ka for SU Lynn-Leo (Pre-SB type Lynn), 109 ± 10 ka for SUs Kim-Larry (SB), 105 ± 10 ka for SUs Kerry-Kate and 109 ± 10 ka for SU Jess (Early HP), 89 ± 8 ka for SU Jude (MSA type Jack), 77 ± 8 ka for SU John, 85 ± 9 ka for SU Fox, 83 ± 8 ka for SU Fred and 65 ± 8 ka for SU OB5 (Intermediate HP), 52 ± 5 ka for SUs OB2-4 (Late HP). This chronology, together with the technological analyses, greatly modifies the current chrono-cultural model regarding the SB and the HP and has important archaeological implications. Indeed, SB and HP no longer appear as short-lived techno-complexes with synchronous appearances for each and restricted to Oxygen Isotopic Stage (OIS) 4 across South Africa, as suggested by Jacobs et al. (2008, 2012). Rather, the sequence of Diepkloof supports a long chronology model with an early appearance of both SB and HP in the first half of OIS 5 and a long duration of the HP into OIS 3. These new dates imply that different technological traditions coexisted during OIS 5 and 4 in southern Africa and that SB and HP can no longer be considered as horizon markers.
Resumo:
The optically stimulated luminescence (OSL) sensitivity of quartz has a significant influence on luminescence dating procedures. Furthermore, identifying the natural controls of quartz OSL sensitivity is an important step towards new applications of OSL in geology such as provenance tracing. We evaluate the OSL sensitivity (total and the proportion of the informally assigned fast, medium and slow components) of single grains of quartz extracted from 10 different igneous and metamorphic rocks with known formation conditions; and from fluvial and coastal sediments with different sedimentary histories and known source rocks. This sample suite allows assessment of the variability of the OSL sensitivity of single quartz grains with respect to their primary origin and sedimentary history. We observed significant variability in the OSL sensitivity of grains within all studied rock and sediment samples, with the brightest grains of each sample being those dominated by the fast component. Quartz from rocks formed under high temperature (> 500 degrees C) conditions, such as rhyolites and metamorphic rocks from the amphibolite facies, display higher OSL sensitivity. The OSL sensitivity of fluvial sediments which have experienced only a short transport distance is relatively low. These sediments show a small increase in OSL sensitivity downstream, mainly due to a decreasing fraction of ""dim"" grains. The quartz grains from coastal sands present very high sensitivity and variability, which is consistent with their long sedimentary history. The high variability of the OSL sensitivity of quartz from coastal sands is attributed more to the mixture of grains with distinct sedimentary histories than to the provenance from many types of source rocks. The temperature of crystallization and the number of cycles of burial and solar exposure are suggested as the main natural factors controlling the OSL sensitivity of quartz grains. The increase in OSL sensitivity due to cycles of erosion and deposition surpasses the sensitivity inherited from the source rock, with this increase being mainly related to the sensitization of fast OSL components. The discrimination of grains with different sedimentary histories through their OSL sensitivities can allow the development of quantitative provenance methods based on quartz. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The application of luminescence dating to young volcanic sediments has been first investigated over three decades ago, but it was only with the technical innovations of the last decade that such analyses became viable. While current analytical procedures show promise for dating late Quaternary volcanic events, most efforts have been aimed at unconsolidated volcanic tephra. Investigations into direct dating of lava flows or of non-heated volcanoclastics like phreatic explosion layers, however, remain scarce. These volcanic deposits are of common occurrence and represent important chrono- and volcanostratigraphic markers. Their age determination is therefore of great importance in volcanologic, tectonic, geomorphological and climate studies. In this article, we propose the use of phreatic explosion deposits and xenolithic inclusions in lava flows as target materials for luminescence dating applications. The main focus is on the crucial criterion whether it is probable that such materials experience complete luminescence signal resetting during the volcanic event to be dated. This is argued based on the findings from existing literature, model calculations and laboratory tests.
Resumo:
The Pyoza River area in the Arkhangelsk district exposes sedimentary sequences suitable for study of the interaction between consecutive Valdaian ice sheets in Northern Russia. Lithostratigraphic investigations combined with luminescence dating have revealed new evidence on the Late Pleistocene history of the area. Overlying glacigenic deposits of the Moscowian (Saalian) glaciation marine deposits previously confined to three separate transgression phases have all been connected to the Mikulinian (Eemian) interglacial. Early Valdaian (E. Weichselian) proglacial, lacustrine and fluvial deposits indicate glaciation to the east or north and consequently glacier damming and meltwater run-off in the Pyoza area around 90-110 ka BP. Interstadial conditions with forest-steppe tundra vegetation and lacustrine and fluvial deposition prevailed at the end of the Early Valdaian around 75-95 ka BP. A terrestrial-based glaciation from easterly uplands reached the Pyoza area at the Early to Middle Valdaian transition around 65-75 ka BP and deposited glaciofluvial strata and subglacial till (Yolkino Till). During deglaciation, laterally extensive glaciolacustrine sediments were deposited in ice-dammed lakes in the early Middle Valdaian around 55-75 ka BP. The Barents-Kara Sea ice sheet deposited the Viryuga Till on the lower Pyoza from northerly directions. The ice sheet formed the Pyoza marginal moraines, which can be correlated with the Markhida moraines further east, and proglacial lacustrine deposition persisted in the area during the first part of the Middle Valdaian. Glacio-isostatic uplift caused erosion followed by pedogenesis and the formation of a deflation horizon in the Middle Valdaian. Widely dispersed periglacial river plains were formed during the Late Valdaian around 10-20 ka BP. Thus, the evidence of a terrestrial-based ice sheet from easterly uplands in the Pyoza area suggests that local piedmont glaciers situated in highlands such as the Timan Ridge or the Urals could have developed into larger, regionally confined ice sheets. Two phases of ice damming and development of proglacial lakes occurred during the Early and Middle Valdaian. The region did not experience glaciation during the Late Valdaian.
Resumo:
La luminescence optique (OSL) a été mesurée sur dix-sept fragments de poterie collectés à Mailhot-Curran (BgFn-2), un site archéologique du Sylvicole supérieur tardif localisé dans le sud-ouest du Québec. Le but principal de ce projet était de dater ce site qui est considéré jusqu’à maintenant comme le plus récent site préhistorique de la concentration de Saint-Anicet, afin de poser un jalon dans la chronologie des sites de cette région. L’OSL a été utilisée conjointement à la datation par radiocarbone (14C) et la sériation du matériel archéologique. L’hypothèse archéologique propose que le village aurait été occupé pendant les années 1518 à 1530 de notre ère (Chapdelaine 2015a). Les résultats que nous proposons dans ce présent mémoire appuient cette proposition. Nous avons obtenu un âge de 490 ± 49 ans (année de référence : 2013), correspondant à l’année 1523 de notre ère avec une probabilité d’occupation du site Mailhot-Curran entre les années 1474 et 1572. Le programme de datation par luminescence optique a été réalisé sur des fragments de poterie domestique composés d’argile de la Mer de Champlain datant de la période du Quaternaire récent. La datation par stimulation infrarouge (IRSL) a été préférentiellement utilisée sur des aliquotes de grains fins polyminéraliques. Pour la détermination des doses équivalentes, un protocole SAR (Murray et Wintle 2000) modifié pour la mesure des feldspaths et incluant un lessivage optique a été utilisé (Lamothe et al. 2004). Les valeurs g ont été mesurées en suivant le protocole proposé par Auclair et al. (2003). La correction de Huntley et Lamothe (2001) a été utilisée afin de corriger les doses équivalentes mesurées pour la décroissance anormale du signal feldspathique. Les doses annuelles ont pour leur part été déterminées par des mesures réalisées in situ et en laboratoire. Les résultats que nous présentons dans ce mémoire sont affectés par une dispersion assez large. Cette variabilité a été prise en compte par des méthodes statistiques pour la détermination de l’âge probable de l’occupation du site Mailhot-Curran.
Resumo:
La luminescence optique (OSL) a été mesurée sur dix-sept fragments de poterie collectés à Mailhot-Curran (BgFn-2), un site archéologique du Sylvicole supérieur tardif localisé dans le sud-ouest du Québec. Le but principal de ce projet était de dater ce site qui est considéré jusqu’à maintenant comme le plus récent site préhistorique de la concentration de Saint-Anicet, afin de poser un jalon dans la chronologie des sites de cette région. L’OSL a été utilisée conjointement à la datation par radiocarbone (14C) et la sériation du matériel archéologique. L’hypothèse archéologique propose que le village aurait été occupé pendant les années 1518 à 1530 de notre ère (Chapdelaine 2015a). Les résultats que nous proposons dans ce présent mémoire appuient cette proposition. Nous avons obtenu un âge de 490 ± 49 ans (année de référence : 2013), correspondant à l’année 1523 de notre ère avec une probabilité d’occupation du site Mailhot-Curran entre les années 1474 et 1572. Le programme de datation par luminescence optique a été réalisé sur des fragments de poterie domestique composés d’argile de la Mer de Champlain datant de la période du Quaternaire récent. La datation par stimulation infrarouge (IRSL) a été préférentiellement utilisée sur des aliquotes de grains fins polyminéraliques. Pour la détermination des doses équivalentes, un protocole SAR (Murray et Wintle 2000) modifié pour la mesure des feldspaths et incluant un lessivage optique a été utilisé (Lamothe et al. 2004). Les valeurs g ont été mesurées en suivant le protocole proposé par Auclair et al. (2003). La correction de Huntley et Lamothe (2001) a été utilisée afin de corriger les doses équivalentes mesurées pour la décroissance anormale du signal feldspathique. Les doses annuelles ont pour leur part été déterminées par des mesures réalisées in situ et en laboratoire. Les résultats que nous présentons dans ce mémoire sont affectés par une dispersion assez large. Cette variabilité a été prise en compte par des méthodes statistiques pour la détermination de l’âge probable de l’occupation du site Mailhot-Curran.
Resumo:
The research is related to the Finnish Jabal Harun Project (FJHP), which is part of the research unit directed by Professor Jaakko Frösén. The project consists of two interrelated parts: the excavation of a Byzantine monastery/pilgrimage centre on Jabal Harun, and a multiperiod archaeological survey of the surrounding landscape. It is generally held that the Near Eastern landscape has been modified by millennia of human habitation and activity. Past climatic changes and human activities could be expected to have significantly changed also the landscape of the Jabal Harun area. Therefore it was considered that a study of erosion in the Jabal Harun area could shed light on the environmental and human history of the area. It was hoped that it would be possible to connect the results of the sedimentological studies either to wider climatic changes in the Near East, or to archaeologically observable periods of human activity and land use. As evidence of some archaeological periods is completely missing from the Jabal Harun area, it was also of interest whether catastrophic erosion or unfavourable environmental change, caused either by natural forces or by human agency, could explain the gaps in the archaeological record. Changes in climate and/or land-use were expected to be reflected in the sedimentary record. The field research, carried out as part of the FJHP survey fieldwork, included the mapping of wadi terraces and cleaning of sediment profiles which were recorded and sampled for laboratory analyses of facies and lithology. To obtain a chronology for the sedimentation and erosion phases also OSL (optically stimulated luminescence) dating samples were collected. The results were compared to the record of the Near Eastern palaeoclimate, and to data from geoarchaeological studies in central and southern Jordan. The picture of the environmental development was then compared to the human history in the area, based on archaeological evidence from the FJHP survey and the published archaeological research in the Petra region, and the question of the relationship between human activity and environmental change was critically discussed. Using the palaeoclimatic data and the results from geoarchaeological studies it was possible to outline the environmental development in the Jabal Harun area from the Pleistocene to the present.It is appears that there was a phase of accumulation of sediment before the Middle Palaeolithic period, possibly related to tectonic movement. This phase was later followed by erosion, tentatively suggested to have taken place during the Upper Palaeolithic. A period of wadi aggradation probably occurred during the Late Glacial and continued until the end of the Pleistocene, followed by significant channel degradation, attributed to increased rainfall during the Early Holocene. It seems that during the later Holocene channel incision has been dominant in the Jabal Harûn area although there have been also small-scale channel aggradation phases, two of which were OSL-dated to around 4000-3000 BP and 2400-2000 BP. As there is no evidence of tectonic movements in the Jabal Harun area after the early Pleistocene, it is suggested that climate change and human activity have been the major causes of environmental change in the area. At a brief glance it seems that many of the changes in the settlement and land use in the Jabal Harun area can be explained by climatic and environmental conditions. However, the responses of human societies to environmental change are dependent on many factors. Therefore an evaluation of the significance of environmental, cultural, socio-economic and political factors is needed to decide whether certain phenomena are environmentally induced. Comparison with the wider Petra region is also needed to judge whether the phenomena are characteristic of the Jabal Harun area only, or can they be connected to social, political and economic development over a wider area.
Resumo:
The main research projects reported in this paper are the establishment of a luminescence (OSL/TL) dating laboratory in The Institute of Geology and Geophysics, CAS, and studies on OSL dating technique and protocol of sediments from North China. These projects have been suggested in order to fit in with the needs of research developments in environmental changes, in particular the aridity and desertification in North China. A new luminescence dating laboratory in which there are a Rise TL/OSL-DA-15B/C reader with Sr-90 beta source, a set of Little More Tape 9022 alpha and beta irradiators, three set of Daybreak 583 intelligent alpha counters and sample preparation system has been set up in the Institute in June 2001. The courses of the establishment of a new laboratory involved a series of technical works, besides making a suitable choice of the equipment, as follows: installing and testing TL/OSL reader, calibrating the dose rate of the beta and alpha sources in the irradiators with the standard sources, testing and calibrating the count rates of the thick source alpha counting in the alpha counters with a standard sample, and then dating of the know age samples to check and examine the OSL/TL dating system. All data obtained from above calibrations and tests show that the established OSL/TL system, including the used equipment in it, can be used to determine age of the geological and archaeological samples with an error of equivalent dose (De) of less than 5%. The OSL dates of several sediment samples obtained from the system are good agreement with those from the OSL dating laboratory in Hong Kong University and ~(14)C dates within 1 - 2 standard deviations. The studies on OSL dating technique and protocol of sediment samples being in progress involve the De determinations with single aliquot regeneration (SAR) (Murray and Wintle, 2000) of the coarse grain quartz from sand dune samples and comparison of the De determinations obtained from SAR with those measured by using multiple aliquot regeneration of loess fine grains. The preliminary results from these research works are shown as follows. The very low natural equivalent dose (De) of about 0.012 - 0.03 Gy, corresponding age of less than 10 years, for BLSL (blue light stimulated luminescence) of the coarse grain quartz from modern sand dune samples in Horqin sand fields has been determined with both the SAR and multiple aliquot regeneration (MAR) techniques. This imply that the BLSL signal zeroing of the quartz could be reached before burying of the sand in Horqin sand fields. The De values and ages of the coarse grain quartz measured with SAR protocol are in good agreement with those obtained from multiple aliquot technique for the modern sand dune samples, but the errors of De from the MAR is greater than those from the SAR. This may imply that the higher precision of age determination for younger sand dune samples could be achieved with the SAR of coarse grain quartz. The MAR combining with "Australian Slide method" may be a perfect choice for De measurements of loess fine grain samples on the basis of analysis of De values obtained from the SAR and from the MAR. The former can be employed to obtain a reliable age estimate of loess sample as older as approximately SO ka BR There is a great difference between De determinations from the (post-IR) OSL of the SAR (Roberts and Wintle, 2001) and those from independent or expected estimates for the older samples. However, the age estimates obtained from the (post-IR) OSL of the SAR are mostly closed to the independent age determinations for the younger (age less than 10 ka) fine grain samples. It may be suggested that the (post-IR) OSL of the SAR protocol of the fine grain fraction would be a suitable choice to dating of the younger samples, but may be unsuitable for the older samples.
Resumo:
McLaren, S. Gilbertson, D. Grattan, J. Hunt, C. Duller, G. Barker, G. Quaternary palaeogeomorphologic evolution of the Wadi Faynan area, Southern Jordan. Palaeogeography, Palaeoclimatology, Palaeoecology. 2004. 205. pp 131-154
New age estimates for the Palaeolithic assemblages and Pleistocene succession of Casablanca, Morocco
Resumo:
Marine and aeolian Quaternary sediments from Casablanca, Morocco were dated using the optically stimulated luminescence (OSL) signal of quartz grains. These sediments form part of an extensive succession spanning the Pleistocene, and contain a rich faunal and archaeological record, including an Acheulian lithic assemblage from before the Brunhes–Matayama boundary, and a Homo erectus jaw from younger cave deposits. Sediment samples from the sites of Reddad Ben Ali, Oulad J’mel, Sidi Abderhamane and Thomas Quarries have been dated, in order to assess the upper limits of OSL. The revision of previously measured mammalian tooth enamel electron spin resonance (ESR) dates from the Grotte des Rhinocéros, Oulad Hamida Quarry 1, incorporating updated environmental dose rate measurements and attenuation calculations, also provide chronological constraint for the archaeological material preserved at Thomas Quarries. Several OSL age estimates extend back to around 500,000 years, with a single sample providing an OSL age close to 1 Ma in magnetically reversed sediments. These luminescence dates are some of the oldest determined, and their reliability is assessed using both internal criteria based on stratigraphic consistency, and external lithostratigraphic, morphostratigraphic and independent chronological constraints. For most samples, good internal agreement is observed using single aliquot regenerative-dose OSL measurements, while multiple aliquot additive-dose measurements generally have poorer resolution and consistency. Novel slow-component and component-resolved OSL approaches applied to four samples provide significantly enhanced dating precision, and an examination of the degree of signal zeroing at deposition. A comparison of the OSL age estimates with the updated ESR dates and one U-series date demonstrate that this method has great potential for providing reliable age estimates for sediments of this antiquity. We consider the cause of some slight age inversion observed at Thomas Quarries, and provide recommendations for further luminescence dating within this succession.
Resumo:
Late Quaternary deposits in the northeastern Brazil have been scarcely investigated, despite their relevance to the discussion of the post-rift evolution of the South American passive margin within the context of landform, sea level and tectonic deformation. Sedimentological, stratigraphic and morphological characterization of these deposits, referred as Post-Barreiras Sediments, led to their distinction from underlying Early/Middle Miocene strata. Based on optically stimulated luminescence (OSL) dating, two sedimentary units (PB1 and PB2) were recognized and related to the time intervals between 74.8 +/- 9.3 and 30.8 +/- 6.9 ka, and 8.8 +/- 0.9 and 1.8 +/- 0.2 ka, respectively. Unit PB1 consists of indurated sandstones and breccias either with massive bedding or complex types of soft sediment deformation structures generated by contemporaneous seismic activity. Unit PB2 is composed of massive sands or sands related to structures developed by dissipation of dunes. The present work, focusing on the Post-Barreiras Sediments, discusses landform, sea level and tectonics of the eastern South American passive margin during the latest Quaternary. Non-deposition and sub-aerial exposure related to the Tortonian worldwide low sea level combined with tectonic quiescence followed the Miocene transgression. Tectonic deformation in the latest Pleistocene created space to accommodate unit PB1 in downthrown faulted blocks and, perhaps, also synclines produced by strike-slip deformation. Although deposition of this unit was simultaneous with the progressive fall in sea level that followed the Last Interglacial Maximum, punctuated rises combined with land subsidence led to marine deposition close to the modern coastline. Renewed subsidence in the Holocene gave rise to accommodation of the Post-Barreiras Sediments. Most of unit PB2 was deposited during the Holocene Transgression, but it is not composed of marine sediments, which suggests either an insignificant rise in relative sea level or aeolian reworking of thin transgressive sands. The data presented here lead to a review of the evolution of the South American passive margin based on assumptions of uniform sedimentation and undeformed planation surfaces over a wide coastal area of the northeastern Brazil. (C) 2011 Elsevier B.V. All rights reserved.