950 resultados para Lumbar vertebrae


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os glicocorticoides (GC) são prescritos por praticamente todas as especialidades médicas, e cerca de 0,5% da população geral do Reino Unido utiliza esses medicamentos. Com o aumento da sobrevida dos pacientes com doenças reumatológicas, a morbidade secundária ao uso dessa medicação representa um aspecto importante que deve ser considerado no manejo de nossos pacientes. As incidências de fraturas vertebrais e não vertebrais são elevadas, variando de 30%-50% em pessoas que usam GC por mais de três meses. Assim, a osteoporose e as fraturas por fragilidade devem ser prevenidas e tratadas em todos os pacientes que iniciarão ou que já estejam em uso desses esteroides. Diversas recomendações elaboradas por várias sociedades internacionais têm sido descritas na literatura, porém não há consenso entre elas. Recentemente, o Americam College of Rheumatology publicou novas recomendações, porém elas são fundamentadas na FRAX (WHO Fracture Risk Assessment Tool) para analisar o risco de cada indivíduo e, dessa maneira, não podem ser completamente utilizadas pela população brasileira. Dessa forma, a Comissão de Osteoporose e Doenças Osteometabólicas da Sociedade Brasileira de Reumatologia, em conjunto com a Associação Médica Brasileira e a Associação Brasileira de Medicina Física e Reabilitação, implementou as diretrizes brasileiras de osteoporose induzida por glicocorticoide (OPIG), baseando-se na melhor evidência científica disponível e/ou experiência de experts. DESCRIÇÃO DO MÉTODO DE COLETA DE EVIDÊNCIA: A revisão bibliográfica de artigos científicos desta diretriz foi realizada na base de dados MEDLINE. A busca de evidência partiu de cenários clínicos reais, e utilizou as seguintes palavras-chave (MeSH terms): Osteoporosis, Osteoporosis/chemically induced*= (Glucocorticoids= Adrenal Cortex Hormones, Steroids), Glucocorticoids, Glucocorticoids/administration and dosage, Glucocorticoids/therapeutic use, Glucocorticoids/adverse effects, Prednisone/adverse effects, Dose-Response Relationship, Drug, Bone Density/drug effects, Bone Density Conservation Agents/pharmacological action, Osteoporosis/ prevention&control, Calcium, Vitamin D, Vitamin D deficiency, Calcitriol, Receptors, Calcitriol; 1-hydroxycholecalciferol, Hydroxycholecalciferols, 25-Hydroxyvitamin D3 1-alpha-hydroxylase OR Steroid Hydroxylases, Prevention and Control, Spinal fractures/prevention & control, Fractures, Spontaneous, Lumbar Vertebrae/injuries, Lifestyle, Alcohol Drinking, Smoking OR tobacco use disorder, Movement, Resistance Training, Exercise Therapy, Bone density OR Bone and Bones, Dual-Energy X-Ray Absorptiometry OR Absorptiometry Photon OR DXA, Densitometry, Radiography, (Diphosphonates Alendronate OR Risedronate Pamidronate OR propanolamines OR Ibandronate OR Zoledronic acid, Teriparatide OR PTH 1-34, Men AND premenopause, pregnancy, pregnancy outcome maternal, fetus, lactation, breast-feeding, teratogens, Children (6-12 anos), adolescence (13-18 anos). GRAU DE RECOMENDAÇÃO E FORÇA DE EVIDÊNCIA: A) Estudos experimentais e observacionais de melhor consistência; B) Estudos experimentais e observacionais de menor consistência; C) Relatos de casos (estudos não controlados); D) Opinião desprovida de avaliação crítica, com base em consensos, estudos fisiológicos ou modelos animais. OBJETIVO: Estabelecer as diretrizes para a prevenção e o tratamento da OPIG.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJETIVO: Avaliamos a influência do diâmetro e do modo de preparação do orifício piloto na resistência ao arrancamento e no torque de inserção dos parafusos pediculares com diâmetro interno cônico. MÉTODOS: Ensaios mecânicos foram realizados com parafusos pediculares com alma cônica e diâmetro de 4,2mm e 5,2mm inseridos nos pedículos vertebrais lombares de suínos. O orifício piloto foi confeccionado com de broca e sondas (pontiaguda e cortante) com diferentes diâmetros. RESULTADOS: Testando o parafuso de 4,2mm a perfuração com orifício igual ou inferior ao menor diâmetro interno do parafuso, aumentou o torque e a resistência ao arrancamento. Perfurações com diferentes instrumentos apresentaram comportamento semelhante. Perfurações com sondas permitiram que orifícios confeccionados com dimensões superiores ao menor diâmetro interno do parafuso apresentassem resistência semelhante a das perfurações com dimensões iguais ao menor diâmetro interno do implante, realizadas com sondas e brocas. CONCLUSÕES: Nos de 4,2 mm o diâmetro e o modo de preparação do orifício influenciam o torque e a resistência, nos de 5,2 mm apenas o torque de inserção. Não há correlação entre força de arrancamento e torque de inserção. Nível de evidência II, Estudos terapêuticos - Investigação dos Resultados do Tratamento.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose Accurate three-dimensional (3D) models of lumbar vertebrae can enable image-based 3D kinematic analysis. The common approach to derive 3D models is by direct segmentation of CT or MRI datasets. However, these have the disadvantages that they are expensive, timeconsuming and/or induce high-radiation doses to the patient. In this study, we present a technique to automatically reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image. Methods Our technique is based on a hybrid 2D/3D deformable registration strategy combining a landmark-to-ray registration with a statistical shape model-based 2D/3D reconstruction scheme. Fig. 1 shows different stages of the reconstruction process. Four cadaveric lumbar spine segments (total twelve lumbar vertebrae) were used to validate the technique. To evaluate the reconstruction accuracy, the surface models reconstructed from the lateral fluoroscopic images were compared to the associated ground truth data derived from a 3D CT-scan reconstruction technique. For each case, a surface-based matching was first used to recover the scale and the rigid transformation between the reconstructed surface model Results Our technique could successfully reconstruct 3D surface models of all twelve vertebrae. After recovering the scale and the rigid transformation between the reconstructed surface models and the ground truth models, the average error of the 2D/3D surface model reconstruction over the twelve lumbar vertebrae was found to be 1.0 mm. The errors of reconstructing surface models of all twelve vertebrae are shown in Fig. 2. It was found that the mean errors of the reconstructed surface models in comparison to their associated ground truths after iterative scaled rigid registrations ranged from 0.7 mm to 1.3 mm and the rootmean squared (RMS) errors ranged from 1.0 mm to 1.7 mm. The average mean reconstruction error was found to be 1.0 mm. Conclusion An accurate, scaled 3D reconstruction of the lumbar vertebra can be obtained from a single lateral fluoroscopic image using a statistical shape model based 2D/3D reconstruction technique. Future work will focus on applying the reconstructed model for 3D kinematic analysis of lumbar vertebrae, an extension of our previously-reported imagebased kinematic analysis. The developed method also has potential applications in surgical planning and navigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clinically, the displacement of intravertebral fat into the circulation during vertebroplasty is reported to lead to problems in elderly patients and can represent a serious complication, especially when multiple levels have to be treated. An in vitro study has shown the feasibility of removing intravertebral fat by pulsed jet-lavage prior to vertebroplasty, potentially reducing the embolization of bone marrow fat from the vertebral bodies and alleviating the cardiovascular changes elicited by pulmonary fat embolism. In this in vivo study, percutaneous vertebroplasty using polymethylmethacrylate (PMMA) was performed in three lumbar vertebrae of 11 sheep. In six sheep (lavage group), pulsed jet-lavage was performed prior to injection of PMMA compared to the control group of five sheep receiving only PMMA vertebroplasty. Invasive recording of blood pressures was performed continuously until 60 min after the last injection. Cardiac output and arterial blood gas parameters were measured at selected time points. Post mortem, the injected cement volume was measured using CT and lung biopsies were processed for assessment of intravascular fat. Pulsed jet-lavage was feasible in the in vivo setting. In the control group, the injection of PMMA resulted in pulmonary fat embolism and a sudden and significant increase in mean pulmonary arterial pressure. Pulsed jet-lavage prevented any cardiovascular changes and significantly reduced the severity of bone marrow fat embolization. Even though significantly more cement had been injected into the lavaged vertebral bodies, significantly fewer intravascular fat emboli were identified in the lung tissue. Pulsed jet-lavage prevented the cardiovascular complications after PMMA vertebroplasty in sheep and alleviated the severity of pulmonary fat embolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: During orthopedic surgery, embolization of bone marrow fat can lead to potentially fatal, intra-operative cardiovascular deterioration. Vasoactive mediators may also be released from the bone marrow and contribute to these changes. Increased plasma levels of endothelin-1 (ET-1) have been observed after pulmonary air and thrombo-embolism. The role of ET-1 in the development of acute cardiovascular deterioration as a result of bone marrow fat embolization during vertebroplasty was therefore investigated. METHODS: Bone cement was injected into three lumbar vertebrae of six sheep in order to force bone marrow fat into the circulation. Invasive blood pressures and heart rate were recorded continuously until 60 min after the last injection. Cardiac output, arterial and mixed venous blood gas parameters and plasma ET-1 concentrations were measured at selected time points. Post-mortem, lung biopsies were taken for analysis of intravascular fat. RESULTS: Cement injections resulted in a sudden (within 1 min) and severe increase in pulmonary arterial pressure (>100%). Plasma concentrations of ET-1 started to increase after the second injection, but no significant changes were observed. Intravascular fat and bone marrow cells were present in all lung lobes. CONCLUSION: Cement injections into vertebral bodies elicited fat embolism resulting in subsequent cardiovascular changes that were characterized by an increase in pulmonary arterial pressure. Cardiovascular complications as a result of bone marrow fat embolism should thus be considered in patients undergoing vertebroplasty. No significant changes in ET-1 plasma values were observed. Thus, ET-1 did not contribute to the acute cardiovascular changes after fat embolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a phase I clinical trial, six multiple myeloma patients, who were non-responsive to conventional therapy and were scheduled for bone marrow transplantation, received Holmium-166 ($\sp{166}$Ho) labeled to a bone seeking agent, DOTMP (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylene-phosphonic acid), for the purpose of bone marrow ablation. The specific aims of my research within this protocol were to evaluate the toxicity and efficacy of $\sp{166}$Ho DOTMP by quantifying the in vivo pharmacokinetics and radiation dosimetry, and by correlating these results to the biologic response observed. The reproducibility of pharmacokinetics from multiple injections of $\sp{166}$Ho DOTMP administered to these myeloma patients was demonstrated from both blood and whole body retention. The skeletal concentration of $\sp{166}$Ho DOTMP was heterogenous in all six patients: high in the ribs, pelvis, and lumbar vertebrae regions, and relatively low in the femurs, arms, and head.^ A novel technique was developed to calculate the radiation dose to the bone marrow in each skeletal ROI, and was applied to all six $\sp{166}$Ho DOTMP patients. Radiation dose estimates for the bone marrow calculated using the standard MIRD "S" factors were compared with the average values derived from the heterogenous distribution of activity in the skeleton (i.e., the regional technique). The results from the two techniques were significantly different; the average of the dose estimates from the regional technique were typically 30% greater. Furthermore, the regional technique provided a range of radiation doses for the entire marrow volume, while the MIRD "S" factors only provided a single value. Dose volume histogram analysis of data from the regional technique indicated a range of dose estimates that varied by a factor of 10 between the high dose and low dose regions. Finally, the observed clinical response of cells and abnormal proteins measured in bone marrow aspirates and peripheral blood samples were compared with radiation dose estimates for the bone marrow calculated from the standard and regional technique. The results showed the regional technique values correlated more closely to several clinical response parameters. (Abstract shortened by UMI.) ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accurate three-dimensional (3D) models of lumbar vertebrae are required for image-based 3D kinematics analysis. MRI or CT datasets are frequently used to derive 3D models but have the disadvantages that they are expensive, time-consuming or involving ionizing radiation (e.g., CT acquisition). In this chapter, we present an alternative technique that can reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image and a statistical shape model. Cadaveric studies are conducted to verify the reconstruction accuracy by comparing the surface models reconstructed from a single lateral fluoroscopic image to the ground truth data from 3D CT segmentation. A mean reconstruction error between 0.7 and 1.4 mm was found.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabecular bone score (TBS) rests on the textural analysis of DXA to reflect the decay in trabecular structure characterising osteoporosis. Yet, its discriminative power in fracture studies remains incomprehensible as prior biomechanical tests found no correlation with vertebral strength. To verify this result possibly due to an unrealistic set-up and to cover a wide range of loading scenarios, the data from three previous biomechanical studies using different experimental settings was used. They involved the compressive failure of 62 human lumbar vertebrae loaded 1) via intervertebral discs to mimic the in vivo situation (“full vertebra”), 2) via the classical endplate embedding (“vertebral body”) or 3) via a ball joint to induce anterior wedge failure (“vertebral section”). HR-pQCT scans acquired prior testing were used to simulate anterior-posterior DXA from which areal bone mineral density (aBMD) and the initial slope of the variogram (ISV), the early definition of TBS, were evaluated. Finally, the relation of aBMD and ISV with failure load (Fexp) and apparent failure stress (σexp) was assessed and their relative contribution to a multi-linear model was quantified via ANOVA. We found that, unlike aBMD, ISV did not significantly correlate with Fexp and σexp, except for the “vertebral body” case (r2 = 0.396, p = 0.028). Aside from the “vertebra section” set-up where it explained only 6.4% of σexp (p = 0.037), it brought no significant improvement to aBMD. These results indicate that ISV, a replica of TBS, is a poor surrogate for vertebral strength no matter the testing set-up, which supports the prior observations and raises a fortiori the question of the deterministic factors underlying the statistical relationship between TBS and vertebral fracture risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Denosumab reduced the incidence of new fractures in postmenopausal women with osteoporosis by 68% at the spine and 40% at the hip over 36 months compared with placebo in the FREEDOM study. This efficacy was supported by improvements from baseline in vertebral (18.2%) strength in axial compression and femoral (8.6%) strength in sideways fall configuration at 36 months, estimated in Newtons by an established voxel-based finite element (FE) methodology. Since FE analyses rely on the choice of meshes, material properties, and boundary conditions, the aim of this study was to independently confirm and compare the effects of denosumab on vertebral and femoral strength during the FREEDOM trial using an alternative smooth FE methodology. Unlike the previous FE study, effects on femoral strength in physiological stance configuration were also examined. QCT data for the proximal femur and two lumbar vertebrae were analyzed by smooth FE methodology at baseline, 12, 24, and 36 months for 51 treated (denosumab) and 47 control (placebo) subjects. QCT images were segmented and converted into smooth FE models to compute bone strength. L1 and L2 vertebral bodies were virtually loaded in axial compression and the proximal femora in both fall and stance configurations. Denosumab increased vertebral body strength by 10.8%, 14.0%, and 17.4% from baseline at 12, 24, and 36 months, respectively (p < 0.0001). Denosumab also increased femoral strength in the fall configuration by 4.3%, 5.1%, and 7.2% from baseline at 12, 24, and 36 months, respectively (p < 0.0001). Similar improvements were observed in the stance configuration with increases of 4.2%, 5.2%, and 5.2% from baseline (p ≤ 0.0007). Differences between the increasing strengths with denosumab and the decreasing strengths with placebo were significant starting at 12 months (vertebral and femoral fall) or 24 months (femoral stance). Using an alternative smooth FE methodology, we confirmed the significant improvements in vertebral body and proximal femur strength previously observed with denosumab. Estimated increases in strength with denosumab and decreases with placebo were highly consistent between both FE techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Histone acetylation plays an essential role in many DNA-related processes such as transcriptional regulation via modulation of chromatin structure. Many histone acetytransferases have been discovered and studied in the past few years, but the roles of different histone acetyltransferases (HAT) during mammalian development are not well defined at present. Gcn5 histone acetyltransferase is highly expressed until E16.5 during development. Previous studies in our lab using a constitutive null allele demonstrated that Gcn5 knock out mice are embryonic lethal, precluding the study of Gcn5 functions at later developmental stages. The creation of a conditional Gcn5 null allele, Gcn5flox allele, bypasses the early lethality. Mice homozygous for this allele are viable and appear healthy. In contrast, mice homozygous for a Gcn5 Δex3-18 allele created by Cre-loxP mediated deletion display a phenotype identical to our original Gcn5 null mice. Strikingly, a Gcn5flox(neo) allele, which contain a neomycin cassette in the second intron of Gcn5 is only partially functional and gives rise to a hypomorphic phenotype. Initiation of cranial neural tube closure at forebrain/midbrain boundary fails, resulting in an exencephaly in some Gcn5flox(neo)/flox(neo) embryos. These defects were found at an even greater penetrance in Gcn5flox(neo)/Δ embryos and become completely penetrant in the 129Sv genetic background, suggesting that Gcn5 controls mouse neural tube closure in a dose dependent manner. Furthermore, both Gcn5flox(neo)/flox(neo) and Gcn5 flox(neo)/Δ embryos exhibit anterior homeotic transformations in lower thoracic and lumbar vertebrae. These defects are accompanied by decreased expression levels and a shift in anterior expression boundary of Hoxc8 and Hoxc9. This study provides the first evidence that Gcn5 regulates Hox gene expression and is required for normal axial skeletal patterning in mice. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Morphological specialization for a specific role has, until now, been assumed to be restricted to social invertebrates. Herein we show that complete physical dimorphism has evolved between reproductives and helpers in the eusocial naked mole-rat. Dimorphism is a consequence of the lumbar vertebrae lengthening after the onset of reproduction in females. This is the only known example of morphological castes in a vertebrate and is distinct from continuous size variation between breeders and helpers in other species of cooperatively breeding vertebrates. The evolution of castes in a mammal and insects represents a striking example of convergent evolution for enhanced fecundity in societies characterized by high reproductive skew. Similarities in the selective environment between naked mole-rats and eusocial insect species highlight the selective conditions under which queen/worker castes are predicted to evolve in animal societies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Body composition (fat mass [FM] and skeletal muscle mass [SMM]) predicts clinical outcomes. In particular, loss of SMM (sarcopenia) is associated with frailty and mortality. There are no data on the prevalence and impact of FM and SMM in patients undergoing transcatheter aortic valve implantation (TAVI). The objective of this study is to determine body composition from pre-TAVI computed tomography (CT) and evaluate its association with clinical outcomes in patients who underwent TAVI. A total of 460 patients (mean age 81 ± 8 years, men: 51%) were included. Pre-TAVI CTs of the aorto-ilio-femoral axis were analyzed for FM and SMM cross-sectional area at the level of the third lumbar vertebrae (L3). Regression equations correlating cross-sectional area at L3 to total body FM and SMM were used to determine prevalence of sarcopenia, obesity, and sarcopenic obesity in patients (64%, 65%, and 46%, respectively). Most TAVI procedures were performed through a transfemoral approach (59%) using a balloon-expandable valve (94%). The 30-day and mid-term (median 12 months [interquartile range 6 to 27]) mortality rates were 6.1% and 29.6%, respectively. FM had no association with clinical outcomes, but sarcopenia predicted cumulative mortality (hazard ratio 1.55, 95% confidence interval 1.02 to 2.36, p = 0.04). In conclusion, body composition analysis from pre-TAVI CT is feasible. Sarcopenia, obesity, and sarcopenic obesity are prevalent in the TAVI population, with sarcopenia predictive of cumulative mortality.