940 resultados para Lower-limb Arteries
Resumo:
Studies indicate that the number of hip bone fractures caused by osteoporosis may rise from 1.66 to 6.26 million until 2050, worldwide. For this reason, implementation of preventive measures becomes a necessity. Female individuals are usually more affected due to a variety of factors including old age, early menopause, chronicle disease in the family history, calcium deficit, as well as the lack of physical exercise (sedentary individual). The aim of this study was to estimate the incidence of hip and lower limb fracture in female individuals’ resident in Aracaju city. From the period of January 2008-2009, around of 300 fracture cases were of lower limb analyzed from females. The incidence of femur fractures in women increased according to age group, 66.17 individuals per 10,000 inhabitants (over 60 years-old). These findings allow us to conclude that the incidence of hip and lower limb bone fractures among women over 60 years were more significant in the femur.
Resumo:
In case of severe osteoarthritis at the knee causing pain, deformity, and loss of stability and mobility, the clinicians consider that the substitution of these surfaces by means of joint prostheses. The objectives to be pursued by this surgery are: complete pain elimination, restoration of the normal physiological mobility and joint stability, correction of all deformities and, thus, of limping. The knee surgical navigation systems have bee developed in computer-aided surgery in order to improve the surgical final outcome in total knee arthroplasty. These systems provide the surgeon with quantitative and real-time information about each surgical action, like bone cut executions and prosthesis component alignment, by mean of tracking tools rigidly fixed onto the femur and the tibia. Nevertheless, there is still a margin of error due to the incorrect surgical procedures and to the still limited number of kinematic information provided by the current systems. Particularly, patello-femoral joint kinematics is not considered in knee surgical navigation. It is also unclear and, thus, a source of misunderstanding, what the most appropriate methodology is to study the patellar motion. In addition, also the knee ligamentous apparatus is superficially considered in navigated total knee arthroplasty, without taking into account how their physiological behavior is altered by this surgery. The aim of the present research work was to provide new functional and biomechanical assessments for the improvement of the surgical navigation systems for joint replacement in the human lower limb. This was mainly realized by means of the identification and development of new techniques that allow a thorough comprehension of the functioning of the knee joint, with particular attention to the patello-femoral joint and to the main knee soft tissues. A knee surgical navigation system with active markers was used in all research activities presented in this research work. Particularly, preliminary test were performed in order to assess the system accuracy and the robustness of a number of navigation procedures. Four studies were performed in-vivo on patients requiring total knee arthroplasty and randomly implanted by means of traditional and navigated procedures in order to check for the real efficacy of the latter with respect to the former. In order to cope with assessment of patello-femoral joint kinematics in the intact and replaced knees, twenty in-vitro tests were performed by using a prototypal tracking tool also for the patella. In addition to standard anatomical and articular recommendations, original proposals for defining the patellar anatomical-based reference frame and for studying the patello-femoral joint kinematics were reported and used in these tests. These definitions were applied to two further in-vitro tests in which, for the first time, also the implant of patellar component insert was fully navigated. In addition, an original technique to analyze the main knee soft tissues by means of anatomical-based fiber mappings was also reported and used in the same tests. The preliminary instrumental tests revealed a system accuracy within the millimeter and a good inter- and intra-observer repeatability in defining all anatomical reference frames. In in-vivo studies, the general alignments of femoral and tibial prosthesis components and of the lower limb mechanical axis, as measured on radiographs, was more satisfactory, i.e. within ±3°, in those patient in which total knee arthroplasty was performed by navigated procedures. As for in-vitro tests, consistent patello-femoral joint kinematic patterns were observed over specimens throughout the knee flexion arc. Generally, the physiological intact knee patellar motion was not restored after the implant. This restoration was successfully achieved in the two further tests where all component implants, included the patellar insert, were fully navigated, i.e. by means of intra-operative assessment of also patellar component positioning and general tibio-femoral and patello-femoral joint assessment. The tests for assessing the behavior of the main knee ligaments revealed the complexity of the latter and the different functional roles played by the several sub-bundles compounding each ligament. Also in this case, total knee arthroplasty altered the physiological behavior of these knee soft tissues. These results reveal in-vitro the relevance and the feasibility of the applications of new techniques for accurate knee soft tissues monitoring, patellar tracking assessment and navigated patellar resurfacing intra-operatively in the contest of the most modern operative techniques. This present research work gives a contribution to the much controversial knowledge on the normal and replaced of knee kinematics by testing the reported new methodologies. The consistence of these results provides fundamental information for the comprehension and improvements of knee orthopedic treatments. In the future, the reported new techniques can be safely applied in-vivo and also adopted in other joint replacements.
Resumo:
The aim of the present thesis was to investigate the influence of lower-limb joint models on musculoskeletal model predictions during gait. We started our analysis by using a baseline model, i.e., the state-of-the-art lower-limb model (spherical joint at the hip and hinge joints at the knee and ankle) created from MRI of a healthy subject in the Medical Technology Laboratory of the Rizzoli Orthopaedic Institute. We varied the models of knee and ankle joints, including: knee- and ankle joints with mean instantaneous axis of rotation, universal joint at the ankle, scaled-generic-derived planar knee, subject-specific planar knee model, subject-specific planar ankle model, spherical knee, spherical ankle. The joint model combinations corresponding to 10 musculoskeletal models were implemented into a typical inverse dynamics problem, including inverse kinematics, inverse dynamics, static optimization and joint reaction analysis algorithms solved using the OpenSim software to calculate joint angles, joint moments, muscle forces and activations, joint reaction forces during 5 walking trials. The predicted muscle activations were qualitatively compared to experimental EMG, to evaluate the accuracy of model predictions. Planar joint at the knee, universal joint at the ankle and spherical joints at the knee and at the ankle produced appreciable variations in model predictions during gait trials. The planar knee joint model reduced the discrepancy between the predicted activation of the Rectus Femoris and the EMG (with respect to the baseline model), and the reduced peak knee reaction force was considered more accurate. The use of the universal joint, with the introduction of the subtalar joint, worsened the muscle activation agreement with the EMG, and increased ankle and knee reaction forces were predicted. The spherical joints, in particular at the knee, worsened the muscle activation agreement with the EMG. A substantial increase of joint reaction forces at all joints was predicted despite of the good agreement in joint kinematics with those of the baseline model. The introduction of the universal joint had a negative effect on the model predictions. The cause of this discrepancy is likely to be found in the definition of the subtalar joint and thus, in the particular subject’s anthropometry, used to create the model and define the joint pose. We concluded that the implementation of complex joint models do not have marked effects on the joint reaction forces during gait. Computed results were similar in magnitude and in pattern to those reported in literature. Nonetheless, the introduction of planar joint model at the knee had positive effect upon the predictions, while the use of spherical joint at the knee and/or at the ankle is absolutely unadvisable, because it predicted unrealistic joint reaction forces.
Resumo:
Background Existing lower-limb, region-specific, patient-reported outcome measures have clinimetric limitations, including limitations in psychometric characteristics (eg, lack of internal consistency, lack of responsiveness, measurement error) and the lack of reported practical and general characteristics. A new patient-reported outcome measure, the Lower Limb Functional Index (LLFI), was developed to address these limitations. Objective The purpose of this study was to overcome recognized deficiencies in existing lower-limb, region-specific, patient-reported outcome measures through: (1) development of a new lower-extremity outcome scale (ie, the LLFI) and (2) evaluation of the clinimetric properties of the LLFI using the Lower Extremity Functional Scale (LEFS) as a criterion measure. Design This was a prospective observational study. Methods The LLFI was developed in a 3-stage process of: (1) item generation, (2) item reduction with an expert panel, and (3) pilot field testing (n=18) for reliability, responsiveness, and sample size requirements for a larger study. The main study used a convenience sample (n=127) from 10 physical therapy clinics. Participants completed the LLFI and LEFS every 2 weeks for 6 weeks and then every 4 weeks until discharge. Data were used to assess the psychometric, practical, and general characteristics of the LLFI and the LEFS. The characteristics also were evaluated for overall performance using the Measurement of Outcome Measures and Bot clinimetric assessment scales. Results The LLFI and LEFS demonstrated a single-factor structure, comparable reliability (intraclass correlation coefficient [2,1]=.97), scale width, and high criterion validity (Pearson r=.88, with 95% confidence interval [CI]). Clinimetric performance was higher for the LLFI compared with the LEFS on the Measurement of Outcome Measures scale (96% and 95%, respectively) and the Bot scale (100% and 83%, respectively). The LLFI, compared with the LEFS, had improved responsiveness (standardized response mean=1.75 and 1.64, respectively), minimal detectable change with 90% CI (6.6% and 8.1%, respectively), and internal consistency (α=.91 and .95, respectively), as well as readability with reduced user error and completion and scoring times. Limitations Limitations of the study were that only participants recruited from outpatient physical therapy clinics were included and that no specific conditions or diagnostic subgroups were investigated. Conclusion The LLFI demonstrated sound clinimetric properties. There was lower response error, efficient completion and scoring, and improved responsiveness and overall performance compared with the LEFS. The LLFI is suitable for assessment of lower-limb function.
Resumo:
Falsely high ankle-brachial index (ABI) values are associated with an adverse clinical outcome in diabetes mellitus. The aim of the present study was to verify whether such an association also exists in patients with chronic critical limb ischemia (CLI) with and without diabetes. A total of 229 patients (74 +/- 11 years, 136 males, 244 limbs with CLI) were followed for 262 +/- 136 days. Incompressibility of lower limb arteries (ABI > 1.3) was found in 45 patients, and was associated with diabetes mellitus (p = 0.01) and renal insufficiency (p = 0.035). Limbs with incompressible ankle arteries had a higher rate of major amputation (p = 0.002 by log-rank). This association was confirmed by multivariate Cox regression analysis (relative risk [RR] 2.67; 95% CI 1.27-5.64, p = 0.01). The relationship between ABI > 1.3 and amputation rate persisted after subjects with diabetes and renal insufficiency had been removed from the analysis (RR 3.85; 95% CI 1.25-11.79, p = 0.018). Dividing limbs with measurable ankle pressure according to tertiles of ABI, the group in the second tertile (0.323 < or = ABI < or = 0.469) had the lowest amputation rate (4/64, 6.2%), and a U-shaped association between the occurrence of major amputation and ABI was evident. No association was found between ABI and mortality. In conclusion, this study demonstrates that falsely high ABI is an independent predictor of major amputation in patients with CLI.
Resumo:
Alterations in nitric oxide synthase (NOS) are implicated in ischemia and ischemia-reperfusion injury. Changes in the 3 NOS isoforms in human skeletal muscle subjected to acute ischemia and reperfusion were studied. Muscle biopsies were taken from patients undergoing total knee replacement. Distribution of the specific NOS isoforms within muscle sections was studied using immunohistochemistry. NOS mRNA levels were measured using real-time reverse transcription-polymerase chain reaction and protein levels studied using Western blotting. NOS activity was also assessed using the citrulline assay. All 3 NOS isoforms were found in muscle sections associated with muscle fibers and microvessels. In muscle subjected to acute ischemia and reperfusion, NOS I/neuronal NOS mRNA and protein were elevated during reperfusion. NOS III/endothelial NOS was also upregulated at the protein level during reperfusion. No changes in NOS II/inducible NOS expression or NOS activity occurred. In conclusion, alterations in NOS I and III (neuronal NOS and endothelial NOS) at different levels occurred after acute ischemia and reperfusion in human skeletal muscle; however, this did not result in increased NOS activity. In the development of therapeutic agents based on manipulation of the NO pathway, targeting the appropriate NOS isoenzymes may be important.
Resumo:
BACKGROUND: Abciximab, a glycoprotein IIb/IIIa antagonist has been shown to improve patency and clinical outcome in patients undergoing endovascular recanalization of femoro-popliteal occlusions. However, data on abciximab therapy in complex peripheral catheter interventions of lower limbs are quite limited. The objective of this retrospective study was to evaluate the clinical and hemodynamic outcomes of patients treated with provisional abciximab during complex peripheral catheter interventions. PATIENTS AND METHODS: Analysis of a consecutive series of 44 patients with provisional abciximab therapy in complex peripheral catheter interventions with imminent risk of early rethrombosis defined as revascularization of arterial occlusions associated with one or more of the following additional circumstances named as time-consuming intervention > 3 hours, compromised contrast flow not solved by stenting, distal embolization not solved by mechanical thromboembolectomy, and peri-interventional notice of thrombus evolution despite adequate heparin adjustment of lower limbs. Adjunctive abciximab therapy was started in accordance to percutaneous coronary bailout situations. The decision to add abciximab was based on the decision of the operator and went along with the judgement that there is a rising risk of reocclusion due to the progressive complexity of an individual intervention. A bolus of 0.25 mg per kilogram of body weight, followed by a maintenance infusion of 0.125 microg/kg/min (up to a maximum dosage of 10 microg/min) for 12 hours was administered. Clinical and hemodynamic outcome was prospectively assessed at discharge, three and six months after the index procedure. RESULTS: The occluded artery of 44 limbs was in the iliac (2%), in the femoro-popliteal (73%) or below the knee segment (25%). Overall, occlusion length was 11.5 +/- 6.5 cm. Technical success rate was 95%. Mean ABI increased from 0.5 +/- 0.16 to 0.88 +/- 0.19 (p < 0.001) with immediate hemodynamic improvement of 91%. Overall, sustained clinical improvement was 84% and 66% at three and six months follow-up, with best results in iliac (100%), followed by below the knee (73%) and by femoro-popliteal segment (63%) at six months, respectively. Overall, secondary clinical improvement was 86% at six months. Minor and major bleeding complications were 16% and 9%, respectively. CONCLUSION: Abciximab should be noticed as medical adjunct in the interventional armamentarium to prevent imminent rethrombosis in complex peripheral catheter interventions.
Resumo:
BACKGROUND: Different stents in infrainguinal arteries have recently been associated with stent fractures and unfavorable clinical outcome, although data is limited regarding fractures of the Xpert selfexpanding nitinol stent. Thus, purpose of the present investigation was to evaluate its incidence and clinical implications in lower limb arteries. PATIENTS AND METHODS: Fifty-three consecutive patients (53 limbs) with peripheral arterial disease underwent secondary Xpert stent implantation due to suboptimal primary balloon angioplasty (PTA). Median age was 76 years. Stent fractures were evaluated by plain X-ray at median follow-up of 16 months. Stent patency was assessed by duplex ultrasound and sustained clinical improvement was defined as improvement of the ABI of > or = 0.10 together with improvement of at least one Rutherford class above the baseline finding throughout follow-up. RESULTS: Median length of femoropopliteal and infrapopliteal lesion was 3.0 and 2.3 cm, respectively. Sixtyfive stents were implanted in 43 limbs with femoropopliteal and 10 stents in 10 limbs with infrapopliteal lesion, respectively. Stent fractures occurred in 3 of 43 limbs (7.0%) of patients with femoropopliteal lesion with stent-based fracture rate of 4.6%. All fractured stents showed multiple struts fractures and occurred in the distal and middle superficial femoral artery. No stent fracture was observed in infrapopliteal lesions. The fractured stents were not associated with any clinical deterioration. Sustained clinical improvement was 71.0% and 54.6% for femoropopliteal and infrapopliteal lesions, respectively. Stent patency assessed by duplex was 65.2 and 63.9% for femoropopliteal and infrapopliteal lesions, respectively. CONCLUSIONS: Fractures of the Xpert stent were seldom and not associated with unfavorable clinical outcome at midterm follow-up.
Resumo:
BACKGROUND Peripheral artery disease (PAD) is a major cause of cardiovascular ischemic events and amputation. Knowledge gaps exist in defining and measuring key factors that predict these events. The objective of this study was to assess whether duration of limb ischemia would serve as a major predictor of limb and patient survival. METHODS The FReedom from Ischemic Events: New Dimensions for Survival (FRIENDS) registry enrolled consecutive patients with limb-threatening peripheral artery disease at a single tertiary care hospital. Demographic information, key clinical care time segments, functional status and use of revascularization, and pharmacotherapy data were collected at baseline, and vascular ischemic events, cardiovascular mortality, and all-cause mortality were recorded at 30 days and 1 year. RESULTS A total of 200 patients with median (interquartile range) age of 76 years (65-84 years) were enrolled in the registry. Median duration of limb ischemia was 0.75 days for acute limb ischemia (ALI) and 61 days for chronic critical limb ischemia (CLI). Duration of limb ischemia of <12, 12 to 24, and >24 hours in patients with ALI was associated with much higher rates of first amputation (P = .0002) and worse amputation-free survival (P = .037). No such associations were observed in patients with CLI. CONCLUSIONS For individuals with ischemic symptoms <14 days, prolonged limb ischemia is associated with higher 30-day and 1-year amputation, systemic ischemic event rates, and worse amputation-free survival. No such associations are evident for individuals with chronic CLI. These data imply that prompt diagnosis and revascularization might improve outcomes for patients with ALI.
Resumo:
By analysing the dynamic principles of the human gait, an economic gait‐control analysis is performed, and passive elements are included to increase the energy efficiency in the motion control of active orthoses. Traditional orthoses use position patterns from the clinical gait analyses (CGAs) of healthy people, which are then de‐normalized and adjusted to each user. These orthoses maintain a very rigid gait, and their energy cosT is very high, reducing the autonomy of the user. First, to take advantage of the inherent dynamics of the legs, a state machine pattern with different gains in eachstate is applied to reduce the actuator energy consumption. Next, different passive elements, such as springs and brakes in the joints, are analysed to further reduce energy consumption. After an off‐line parameter optimization and a heuristic improvement with genetic algorithms, a reduction in energy consumption of 16.8% is obtained by applying a state machine control pattern, and a reduction of 18.9% is obtained by using passive elements. Finally, by combining both strategies, a more natural gait is obtained, and energy consumption is reduced by 24.6%compared with a pure CGA pattern.
Resumo:
The field of exoskeletons and wearable devices for walking assistance and rehabilitation has advanced considerably over the past few years. Currently, commercial devices contain joints with stiff actuators that cannot adapt to unpredictable environments. These actuators consume more energy and may not be appropriate for human-machine interactions. Thus, adjustable compliant actuators are being cautiously incorporated into new exoskeletons and active orthoses. Some simulation-based studies have evaluated the benefits of incorporating compliant joints into such devices. Another reason that compliant actuators are desirable is that spasticity and spasmodic movements are common among patients with motor deficiencies; compliant actuators could efficiently absorb these perturbations and improve joint control. In this paper, we provide an overview of the requirements that must be fulfilled by these actuators while evaluating the behavior of leg joints in the locomotion cycle. A brief review of existing compliant actuators is conducted, and our proposed variable stiffness actuator prototype is presented and evaluated. The actuator prototype is implemented in an exoskeleton knee joint operated by a state machine that exploits the dynamics of the leg, resulting in a reduction in actuation energy demand and better adaptability to disturbances.