894 resultados para Low-molecular-weight


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-molecular-weight heparins (LMWHs) have shown equivalent or superior efficacy and safety to unfractionated heparin as antithrombotic therapy for patients with acute coronary syndromes. Each approved LMWH is a pleotropic biological agent with a unique chemical, biochemical, biophysical and biological profile and displays different pharmacodynamic and pharmacokinetic profiles. As a result, LMWHs are neither equipotent in preclinical assays nor equivalent in terms of their clinical efficacy and safety. Previously, the US Food and Drug Administration (FDA) cautioned against using various LMWHs interchangeably, however recently, the FDA approved generic versions of LMWH that have not been tested in large clinical trials. This paper highlights the bio-chemical and pharmacological differences between the LMWH preparations that may result in different clinical outcomes, and also reviews the implications and challenges physicians face when generic versions of the original/innovator agents are approved for clinical use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NK cells express toll-like receptors (TLR) that recognize conserved pathogen or damage associated molecular patterns and play a fundamental role in innate immunity. Low molecular weight dextran sulfate (DXS), known to inhibit the complement system, has recently been reported by us to inhibit TLR4-induced maturation of human monocyte-derived dendritic cells (MoDC). In this study, we investigated the capability of DXS to interfere with human NK cell activation triggered directly by TLR2 agonists or indirectly by supernatants of TLR4-activated MoDC. Both TLR2 agonists and supernatants of TLR4-activated MoDC activated NK cells phenotypically, as demonstrated by the analysis of NK cell activation markers (CD56, CD25, CD69, NKp30, NKp44, NKp46, DNAM-1 and NKG2D), and functionally as shown by increased NK cell degranulation (CD107a surface expression) and IFN-gamma secretion. DXS prevented the up-regulation of NK cell activation markers triggered by TLR2 ligands or supernatants of TLR4-activated MoDC and dose-dependently abrogated NK cell degranulation and IFN-gamma secretion. In summary our results suggest that DXS may be a useful reagent to inhibit the direct and indirect TLR-mediated activation of NK cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low mol. wt. (LMW) org. acids are important and ubiquitous chem. constituents in the atm. A comprehensive study of the chem. compn. of pptn. was carried out from June 2007 to June 2008 at a rural site in Anshun, in the west of Guizhou Province, China. During this period, 118 rainwater samples were collected and the main LMW carboxylic acids were detd. using ion chromatog. The av. pH of rainwater was 4.89 which is a typical acidic value. The most abundant carboxylic acids were formic acid (vol. wt. mean concn.: 8.77 μmol L-1) and acetic acid (6.90 μmol L-1), followed by oxalic acid (2.05 μmol L-1). The seasonal variation of concns. and wet deposition fluxes of org. acids indicated that direct vegetation emissions were the main sources of the org. acids. Highest concns. were obsd. in winter and were ascribed to the low winter rainfall and the contribution of other air pollution sources northeast of the study area. The ratio of formic and acetic acids in the pptn. ([F/A]T) was proposed as an indicator of pollution source. This suggested that the pollution resulted from direct emissions from natural or anthropogenic sources. Comparison with acid pptn. in other urban and rural areas in Guizhou showed that there was a decreasing contribution of LMW org. acids to free acidity and all anions in rainwater from urban to remote rural areas. Consequently, it is necessary to control emissions of org. acids to reduce the frequency of acid rain, esp. in rural and remote areas. [on SciFinder(R)]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report of a 71-year-old woman with a history of chronic analgesic nephropathy, who underwent coronary angiography. Because of anterior ventricular aneurysm, anticoagulation with nadroparine was installed. Continued ACE-inhibitor and ASA with additional intravenous contrast substance lead to acute tubular necrosis with rapid decline of the renal function. Due to accumulation of the low molecular weight heparin, the patient developed an extensive retroperitoneal haematoma with circulatory shock and temporary anuric kidney failure. Low molecular weight heparins are commonly used during percutaneous coronary interventions. They are as safe and efficient compared to unfractioned heparin. But due to their renal elimination, they have to be monitored by measuring anti-factor Xa-activity if creatinine-clearance is <30 ml/min.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low molecular weight dextran sulfate (DXS) has been reported to inhibit the classical, alternative pathway as well as the mannan-binding lectin pathway of the complement system. Furthermore, it acts as an endothelial cell protectant inhibiting complement-mediated endothelial cell damage. Endothelial cells are covered with a layer of heparan sulfate (HS), which is rapidly released under conditions of inflammation and tissue injury. Soluble HS induces maturation of dendritic cells (DC) via TLR4. In this study, we show the inhibitory effect of DXS on human DC maturation. DXS significantly prevents phenotypic maturation of monocyte-derived DC and peripheral myeloid DC by inhibiting the up-regulation of CD40, CD80, CD83, CD86, ICAM-1, and HLA-DR and down-regulates DC-SIGN in response to HS or exogenous TLR ligands. DXS also inhibits the functional maturation of DC as demonstrated by reduced T cell proliferation, and strongly impairs secretion of the proinflammatory mediators IL-1beta, IL-6, IL-12p70, and TNF-alpha. Exposure to DXS leads to a reduced production of the complement component C1q and a decreased phagocytic activity, whereas C3 secretion is increased. Moreover, DXS was found to inhibit phosphorylation of IkappaB-alpha and activation of NF-kappaB. These findings suggest that DXS prevents TLR-induced maturation of human DC and may therefore be a useful reagent to impede the link between innate and adaptive immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complement is an essential part of the innate immune system and plays a crucial role in organ and islet transplantation. Its activation, triggered for example by ischemia/reperfusion (I/R), significantly influences graft survival, and blocking of complement by inhibitors has been shown to attenuate I/R injury. Another player of innate immunity are the dendritic cells (DC), which form an important link between innate and adaptive immunity. DC are relevant in the induction of an immune response as well as in the maintenance of tolerance. Modulation or inhibition of both components, complement and DC, may be crucial to improve the clinical outcome of solid organ as well as islet transplantation. Low molecular weight dextran sulfate (DXS), a well-known complement inhibitor, has been shown to prevent complement-mediated damage of the donor graft endothelium and is thus acting as an endothelial protectant. In this review we will discuss the evidence for this cytoprotective effect of DXS and also highlight recent data which show that DXS inhibits the maturation of human DC. Taken together the available data suggest that DXS may be a useful reagent to prevent the activation of innate immunity, both in solid organ and islet transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter summarises the metabolomic strategies currently in force used in plant science and describes the methods used. The metabolite profiling and fingerprinting of plant tissues through MS- and/or NMR-based approaches and the subsequent identification of biomarkers is detailed. Strategies for the microisolation and de novo identification of unknown biomarkers are also discussed. The various approaches are illustrated by a metabolomic study of the maize response to herbivory. A review of recent metabolomic studies performed on seed and crop plant tissues involving various analytical strategies is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclin E, in complex with cyclin dependent kinase 2 (CDK2), is a positive regulator of G1 to S phase progression of the cell cycle. Deregulation of G1/S phase transition occurs in the majority of tumors. Cyclin E is overexpressed and post-translationally generates low molecular weight (LMW) isoforms in breast cancer, but not normal cells. Such alteration of cyclin E is linked to poor prognosis. Therefore, we hypothesized that the LMW isoforms of cyclin E provide a novel mechanism of cell cycle de-regulation in cancer cells. Insect cell expression system was used to explore the biochemical properties of the cyclin E isoforms. Non-tumorigenic (76NE6) and tumorigenic (T47D) mammary epithelial cells transfected with the cyclin E isoforms and breast tumor tissue endogenously expressing the LMW isoforms were used to study the biologic consequences of the LMW isoforms of cyclin E. All model systems studied show that the LMW forms (compared to full-length cyclin E) have increased kinase activity when partnered with CDK2. Increases in the percentage of cells in S phase and colony formation were also observed after overexpression of LMW compared to full-length cyclin E. The LMW isoforms of cyclin E utilize several mechanisms to attain their hyper-activity. They bind CDK2 more efficiently, and are resistant to inhibition by cyclin dependent kinase inhibitors (CKIs) as compared to full-length cyclin E. In addition, the LMW isoforms sequester the CKIs from full-length cyclin E abrogating the overall negative regulation of cyclin E. Despite their correlation with adverse biological consequences, the direct role of the LMW isoforms of cyclin E in mediating tumorigenesis remained unanswered. Subsequent to LMW cyclin E expression in 76NE6 cells, they lose their ability to enter quiescence and exhibit genomic instability, both characteristic of a tumor cell phenotype. Furthermore, injection of 76NE6 cells overexpressing each of the cyclin E isoforms into the mammary fat pad of nude mice revealed that the LMW isoforms of cyclin E yield tumors, whereas the full-length cyclin E does not. In conclusion, the LMW isoforms of cyclin E utilize several mechanisms to acquire a hyperactive phenotype that results in deregulation of the cell cycle and initiates the tumorigenic process in otherwise non-transformed mammary epithelial cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C2-C8 hydrocarbon concentrations (about 35 compounds identified, including saturated, aromatic, and olefinic compounds) from 38 shipboard sealed, deep-frozen core samples of Deep Sea Drilling Project Sites 585 (East Mariana Basin) and 586 (Ontong-Java Plateau) were determined by a gas stripping-thermovaporization method. Total concentrations, which represent the hydrocarbons dissolved in the pore water and adsorbed on the mineral surfaces of the sediment, vary from 20 to 630 ng/g of rock at Site 585 (sub-bottom depth range 332-868 m). Likewise, organic-carbon normalized yields range from 3*10**4 to 9*10**5 ng/g Corg, indicating that the organic matter is still in the initial, diagenetic evolutionary stage. The highest value (based on both rock weight and organic carbon) is measured in an extremely organic-carbon-poor sample of Lithologic Subunit VB (Core 585-30). In this unit (504-550 m) several samples with elevated organic-carbon contents and favorable kerogen quality including two thin "black-shale" layers deposited at the Cenomanian/Turonian boundary (not sampled for this study) were encountered. We conclude from a detailed comparison of light hydrocarbon compositions that the Core 585-30 sample is enriched in hydrocarbons of the C2-C8 molecular range, particularly in gas compounds, which probably migrated from nearby black-shale source layers. C2-C8 hydrocarbon yields in Site 586 samples (sub-bottom depth range 27-298 m) did not exceed 118 ng/g of dry sediment weight (average 56 ng/g), indicating the immaturity of these samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of C2-C8 hydrocarbons (including saturated, aromatic, and olefinic compounds) from deep-frozen core samples taken during DSDP Leg 75 (Holes 530A and 532) were analyzed by a combined hydrogen-stripping/thermovaporization method. Concentrations representing both hydrocarbons dissolved in the pore water and adsorbed on the mineral surfaces vary in Hole 530A from about 10 to 15,000 ng/g of dry sediment weight depending on the lithology (organic-carbon-lean calcareous oozes versus "black shales"). Likewise, the organic-carbon-normalized C2-C8 hydrocarbon concentrations vary from 3,500 to 93,100 ng/g Corg, reflecting drastic differences in the hydrogen contents and hence the hydrocarbon potential of the kerogens. The highest concentrations measured of nearly 10**5 ng/g Corg are about two orders of magnitude below those usually encountered in Type-II kerogen-bearing source beds in the main phase of petroleum generation. Therefore, it was concluded that Hole 530A sediments, even at 1100 m depth, are in an early stage of evolution. The corresponding data from Hole 532 indicated lower amounts (3,000-9,000 ng/g Corg), which is in accordance with the shallow burial depth and immaturity of these Pliocene/late Miocene sediments. Significant changes in the light hydrocarbon composition with depth were attributed either to changes in kerogen type or to maturity related effects. Redistribution pheonomena, possibly the result of diffusion, were recognized only sporadically in Hole 530A, where several organic-carbon lean samples were enriched by migrated gaseous hydrocarbons. The core samples from Hole 530A were found to be severely contaminated by large quantities of acetone, which is routinely used as a solvent during sampling procedures on board Glomar Challenger.