994 resultados para Loop Region
Resumo:
Das Hepatitis C Virus (HCV) ist ein umhülltes Virus aus der Familie der Flaviviridae. Es besitzt ein Plusstrang-RNA Genom von ca. 9600 Nukleotiden Länge, das nur ein kodierendes Leseraster besitzt. Das Genom wird am 5’ und 3’ Ende von nicht-translatierten Sequenzen (NTRs) flankiert, welche für die Translation und vermutlich auch Replikation von Bedeutung sind. Die 5’ NTR besitzt eine interne Ribosomeneintrittsstelle (IRES), die eine cap-unabhängige Translation des ca. 3000 Aminosäure langen viralen Polyproteins erlaubt. Dieses wird ko- und posttranslational von zellulären und viralen Proteasen in 10 funktionelle Komponenten gespalten. Inwieweit die 5’ NTR auch für die Replikation der HCV RNA benötigt wird, war zu Beginn der Arbeit nicht bekannt. Die 3’ NTR besitzt eine dreigeteilte Struktur, bestehend aus einer variablen Region, dem polyU/UC-Bereich und der sogenannten X-Sequenz, eine hochkonservierte 98 Nukleotide lange Region, die vermutlich für die RNA-Replikation und möglicherweise auch für die Translation benötigt wird. Die genuae Rolle der 3’ NTR für diese beiden Prozesse war zu Beginn der Arbeit jedoch nicht bekannt. Ziel der Dissertation war deshalb eine detaillierte genetische Untersuchung der NTRs hinsichtlich ihrer Bedeutung für die RNA-Translation und -Replikation. In die Analyse mit einbezogen wurden auch RNA-Strukturen innerhalb der kodierenden Region, die zwischen verschiedenen HCV-Genotypen hoch konserviert sind und die mit verschiedenen computer-basierten Modellen vorhergesagt wurden. Zur Kartierung der für RNA-Replikation benötigten Minimallänge der 5’ NTR wurde eine Reihe von Chimären hergestellt, in denen unterschiedlich lange Bereiche der HCV 5’ NTR 3’ terminal mit der IRES des Poliovirus fusioniert wurden. Mit diesem Ansatz konnten wir zeigen, dass die ersten 120 Nukleotide der HCV 5’ NTR als Minimaldomäne für Replikation ausreichen. Weiterhin ergab sich eine klare Korrelation zwischen der Länge der HCV 5’ NTR und der Replikationseffizienz. Mit steigender Länge der 5’ NTR nahm auch die Replikationseffizienz zu, die dann maximal war, wenn das vollständige 5’ Element mit der Poliovirus-IRES fusioniert wurde. Die hier gefundene Kopplung von Translation und Replikation in der HCV 5’ NTR könnte auf einen Mechanismus zur Regulation beider Funktionen hindeuten. Es konnte allerdings noch nicht geklärt werden, welche Bereiche innerhalb der Grenzen des IRES-Elements genau für die RNA-Replikation benötigt werden. Untersuchungen im Bereich der 3’ NTR ergaben, dass die variable Region für die Replikation entbehrlich, die X-Sequenz jedoch essentiell ist. Der polyU/UC-Bereich musste eine Länge von mindestens 11-30 Uridinen besitzen, wobei maximale Replikation ab einer Länge von 30-50 Uridinen beobachtet wurde. Die Addition von heterologen Sequenzen an das 3’ Ende der HCV-RNA führte zu einer starken Reduktion der Replikation. In den hier durchgeführten Untersuchungen zeigte keines der Elemente in der 3’ NTR einen signifikanten Einfluss auf die Translation. Ein weiteres cis aktives RNA-Element wurde im 3’ kodierenden Bereich für das NS5B Protein beschrieben. Wir fanden, dass Veränderungen dieser Struktur durch stille Punktmutationen die Replikation hemmten, welche durch die Insertion einer intakten Version dieses RNA-Elements in die variable Region der 3’ NTR wieder hergestellt werden konnte. Dieser Versuchsansatz erlaubte die genaue Untersuchung der für die Replikation kritischen Strukturelemente. Dadurch konnte gezeigt werden, dass die Struktur und die Primärsequenz der Loopbereiche essentiell sind. Darüber hinaus wurde eine Sequenzkomplementarität zwischen dem Element in der NS5B-kodierenden Region und einem RNA-Bereich in der X-Sequenz der 3’ NTR gefunden, die eine sog. „kissing loop“ Interaktion eingehen kann. Mit Hilfe von gezielten Mutationen konnten wir zeigen, dass diese RNA:RNA Interaktion zumindest transient stattfindet und für die Replikation des HCV essentiell ist.
Resumo:
The amyloid precursor protein (APP) is a type I transmembrane glycoprotein, which resembles a cell surface receptor, comprising a large ectodomain, a single spanning transmembrane part and a short C-terminal, cytoplasmic domain. It belongs to a conserved gene family, with over 17 members, including also the two mammalian APP homologues proteins APLP1 and APLP2 („amyloid precursor like proteins“). APP is encoded by 19 exons, of which exons 7, 8, and 15 can be alternatively spliced to produce three major protein isoforms APP770, APP751 and APP695, reflecting the number of amino acids. The neuronal APP695 is the only isoform that lacks a Kunitz Protease Inhibitor (KPI) domain in its extracellular portion whereas the two larger, peripheral APP isoforms, contain the 57-amino-acid KPI insert. rnRecently, research effort has suggested that APP metabolism and function is thought to be influenced by homodimerization and that the oligomerization state of APP could also play a role in the pathology of Alzheimer's disease (AD), by regulating its processing and amyloid beta production. Several independent studies have shown that APP can form homodimers within the cell, driven by motifs present in the extracellular domain, as well as in the juxtamembrane (JM) and transmembrane (TM) regions of the molecule, whereby the exact molecular mechanism and the origin of dimer formation remains elusive. Therefore, we focused in our study on the actual subcellular origin of APP homodimerization within the cell, an underlying mechanism, and a possible impact on dimerization properties of its homologue APLP1. Furthermore, we analyzed homodimerization of various APP isoforms, in particular APP695, APP751 and APP770, which differ in the presence of a Kunitz-type protease inhibitor domain (KPI) in the extracellular region. In order to assess the cellular origin of dimerization under different cellular conditions, we established a mammalian cell culture model-system in CHO-K1 (chinese hamster ovary) cells, stably overexpressing human APP, harboring dilysine based organelle sorting motifs at the very C-terminus [KKAA-Endoplasmic Reticulum (ER); KKFF-Golgi]. In this study we show that APP exists as disulfide-bound, SDS-stable dimers, when it was retained in the ER, unlike when it progressed further to the cis-Golgi, due to the KKFF ER exit determinant. These stable APP complexes were isolated from cells, and analyzed by SDS–polyacrylamide gel electrophoresis under non-reducing conditions, whereas strong denaturing and reducing conditions completely converted those dimers to monomers. Our findings suggested that APP homodimer formation starts early in the secretory pathway and that the unique oxidizing environment of the ER likely promotes intermolecular disulfide bond formation between APP molecules. We particularly visualized APP dimerization employing a variety of biochemical experiments and investigated the origin of its generation by using a Bimolecular Fluorescence Complementation (BiFC) approach with split GFP-APP chimeras. Moreover, using N-terminal deletion constructs, we demonstrate that intermolecular disulfide linkage between cysteine residues, exclusively located in the extracellular E1 domain, represents another mechanism of how an APP sub-fraction can dimerize within the cell. Additionally, mutational studies revealed that cysteines at positions 98 and 105, embedded in the conserved loop region within the E1 domain, are critical for interchain disulfide bond formation. Using a pharmacological treatment approach, we show that once generated in the oxidative environment of the ER, APP dimers remain stably associated during transport, reaching the plasma membrane. In addition, we demonstrate that APP isoforms, encompassing the KPI domain, exhibit a strongly reduced ability to form cis-directed dimers in the ER, whereas trans-directed cell aggregation of Drosophila Schneider (S2)-cells was isoform independent, mediating cell-cell contacts. Thus, suggesting that steric properties of KPI-APP might be the cause for weaker cis-interaction in the ER, compared to APP695. Finally, we provide evidence that APP/APLP1 heterointeractions are likewise initiated in the ER, suggesting a similar mechanism for heterodimerization. Therefore, dynamic alterations of APP between monomeric, homodimeric, and possibly heterodimeric status could at least partially explain some of the variety in the physiological functions of APP.rn
Resumo:
Der Haupt-Lichtsammenkomplex II (LHCII) höherer Pflanzen ist das häufigsternMembranprotein der Welt und in die chloroplastidäre Thylakoidmembran integriert. DerrnLHCII kann als Modellsystem genutzt werden, um die Funktionsweise vonrnMembranproteinen besser zu verstehen, da 96 % seiner Struktur kristallografisch aufgelöstrnist und er in rekombinanter Form in vitro rückgefaltet werden kann. Hierbei entsteht einrnvoll funktionaler Protein-Pigment.Komplex, der nahezu identisch mit der in vivo Varianternist.rnElektronenparamagnetischen Resonanz (EPR) Spektroskopie ist eine hoch sensitive undrnideal geeignete Methode, um die Strukturdynamik von Proteinen zu untersuchen. Hierzurnist eine ortsspezifische Markierung mit Spinsonden notwendig, die kovalent an Cysteinernbinden. Möglich wird dies, indem sorgfältig ausgewählte Aminosäuren gegen Cysteinerngetauscht werden, ohne dass die Funktionsweise des LHCII beeinträchtigt wird.rnIm Rahmen dieser Arbeit wurden die Stabilität des verwendeten Spinmarkers und diernProbenqualität verbessert, indem alle Schritte der Probenpräparation untersucht wurden.rnMithilfe dieser Erkenntnisse konnte sowohl die Gefahr einer Proteinaggregation als auchrnein Verlust des EPR Signals deutlich vermindert werden. In Kombination mit derrngleichzeitigen Etablierung des Q-Band EPR können nun deutlich geringer konzentrierternProben zuverlässig vermessen werden. Darüber hinaus wurde eine reproduzierbarernMethode entwickelt, um heterogene Trimere herzustellen. Diese bestehen aus einemrndoppelt markierten Monomer und zwei unmarkierten Monomeren und erlauben es, diernkristallografisch unvollständig aufgelöste N-terminale Domäne im monomeren undrntrimeren Assemblierungsgrad zu untersuchen. Die Ergebnisse konnten einerseits diernVermutung bestätigen, dass diese Domäne im Vergleich zum starren Proteinkern sehrrnflexibel ist und andererseits, dass sie in Monomeren noch mobiler ist als in Trimeren.rnZudem wurde die lumenale Schleifenregion bei unterschiedlichen pH Werten undrnvariierender Pigmentzusammensetzung untersucht, da dieser Bereich sehr kontroversrndiskutiert wird. Die Messergebnisse offenbarten, dass diese Region starre und flexiblerernSektionen aufweist. Während der pH Wert keinen Einfluss auf die Konformation hatte,rnzeigte sich, dass die Abwesenheit von Neoxanthin zu einer Änderung der Konformationrnführt. Weiterführende Analysen der strukturellen Dynamik des LHCII in einerrnLipidmembran konnten hingegen nicht durchgeführt werden, da dies eine gerichteternInsertion des rückgefalteten Proteins in Liposomen erfordert, was trotz intensiverrnVersuche nicht zum Erfolg führte.
Resumo:
Aim The strawberry poison frog, Oophaga pumilio, has undergone a remarkable radiation of colour morphs in the Bocas del Toro archipelago in Panama. This species shows extreme variation in colour and pattern between populations that have been geographically isolated for < 10,000 years. While previous research has suggested the involvement of divergent selection, to date no quantitative test has examined this hypothesis. Location Bocas del Toro archipelago, Panama. Methods We use a combination of population genetics, phylogeography and phenotypic analyses to test for divergent selection in coloration in O. pumilio. Tissue samples of 88 individuals from 15 distinct populations were collected. Using these data, we developed a gene tree using the mitochondrial DNA (mtDNA) d-loop region. Using parameters derived from our mtDNA phylogeny, we predicted the coalescence of a hypothetical nuclear gene underlying coloration. We collected spectral reflectance and body size measurements on 94 individuals from four of the populations and performed a quantitative analysis of phenotypic divergence. Results The mtDNA d-loop tree revealed considerable polyphyly across populations. Coalescent reconstructions of gene trees within population trees revealed incomplete genotypic sorting among populations. The quantitative analysis of phenotypic divergence revealed complete lineage sorting by colour, but not by body size: populations showed non-overlapping variation in spectral reflectance measures of body coloration, while variation in body size did not separate populations. Simulations of the coalescent using parameter values derived from our empirical analyses demonstrated that the level of sorting among populations seen in colour cannot reasonably be attributed to drift. Main conclusions These results imply that divergence in colour, but not body size, is occurring at a faster rate than expected under neutral processes. Our study provides the first quantitative support for the claim that strong diversifying selection underlies colour variation in the strawberry poison frog.
Resumo:
Deregulation of the myeloid key transcription factor CEBPA is a common event in acute myeloid leukemia (AML). We previously reported that the chaperone calreticulin is activated in subgroups of AML patients and that calreticulin binds to the stem loop region of the CEBPA mRNA, thereby blocking CEBPA translation. In this study, we screened for additional CEBPA mRNA binding proteins and we identified protein disulfide isomerase (PDI), an endoplasmic reticulum (ER) resident protein, to bind to the CEBPA mRNA stem loop region. We found that forced PDI expression in myeloid leukemic cells in fact blocked CEBPA translation, but not transcription, whereas abolishing PDI function restored CEBPA protein. In addition, PDI protein displayed direct physical interaction with calreticulin. Induction of ER stress in leukemic HL60 and U937 cells activated PDI expression, thereby decreasing CEBPA protein levels. Finally, leukemic cells from 25.4% of all AML patients displayed activation of the unfolded protein response as a marker for ER stress, and these patients also expressed significantly higher PDI levels. Our results indicate a novel role of PDI as a member of the ER stress-associated complex mediating blocked CEBPA translation and thereby suppressing myeloid differentiation in AML patients with activated unfolded protein response (UPR).
Resumo:
Cytotoxic T lymphocytes (CTLs) play an important role in the suppression of initial viremia after acute infection with the human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome (AIDS). Most HIV-infected individuals attain a high titer of anti-HIV antibodies within weeks of infection; however this antibody-mediated immune response appears not to be protective. In addition, anti-HIV antibodies can be detrimental to the immune response to HIV through enhancement of infection and participating in autoimmune reactions as a result of HIV protein mimicry of self antigens. Thus induction and maintenance of a strong HIV-specific CTL immune response in the absence of anti-HIV antibodies has been proposed to be the most effective means of controlling of HIV infection. Immunization with synthetic peptides representing HIV-specific CTL epitopes provides a way to induce specific CTL responses, while avoiding stimulation of anti-HIV antibody. This dissertation examines the capacity of synthetic peptides from the V3 loop region of the gp120 envelope protein from several different strain of HIV-1 to induce HIV-specific, MHC-restricted CD8$\sp+$ CTL response in vivo in a mouse model. Seven synthetic peptides representative of sequences found throughout North America, Europe, and Central Africa have been shown to prime CTLs in vivo. In the case of the MN strain of HIV-1, a 13 amino acid sequence defining the epitope is most efficient for optimal induction of specific CTL, whereas eight to nine amino acid sequences that could define the epitope were not immunogenic. In addition, synthesis of peptides with specific amino acid substitutions that are important for either MHC binding or T cell receptor recognition resulted in peptides that exhibited increased immunogenicity and induced CTLs that displayed altered specificity. V3 loop peptides from HIV-1 MN, SC, and Z321 induced a CTL population that was broadly cross-reactive against strains of HIV-1 found throughout the world. This research confirms the potential efficacy of using synthetic peptides for in vivo immunization to induce HIV-specific CTL-mediated responses and provides a basis for further research into development of synthetic peptide-based vaccines. ^
Resumo:
Two regions in the 3$\prime$ domain of 16S rRNA (the RNA of the small ribosomal subunit) have been implicated in decoding of termination codons. Using segment-directed PCR random mutagenesis, I isolated 33 translational suppressor mutations in the 3$\prime$ domain of 16S rRNA. Characterization of the mutations by both genetic and biochemical methods indicated that some of the mutations are defective in UGA-specific peptide chain termination and that others may be defective in peptide chain termination at all termination codons. The studies of the mutations at an internal loop in the non-conserved region of helix 44 also indicated that this structure, in a non-conserved region of 16S rRNA, is involved in both peptide chain termination and assembly of 16S rRNA.^ With a suppressible trpA UAG nonsense mutation, a spontaneously arising translational suppressor mutation was isolated in the rrnB operon cloned into a pBR322-derived plasmid. The mutation caused suppression of UAG at two codon positions in trpA but did not suppress UAA or UGA mutations at the same trpA positions. The specificity of the rRNA suppressor mutation suggests that it may cause a defect in UAG-specific peptide chain termination. The mutation is a single nucleotide deletion (G2484$\Delta$) in helix 89 of 23S rRNA (the large RNA of the large ribosomal subunit). The result indicates a functional interaction between two regions of 23S rRNA. Furthermore, it provides suggestive in vivo evidence for the involvement of the peptidyl-transferase center of 23S rRNA in peptide chain termination. The $\Delta$2484 and A1093/$\Delta$2484 (double) mutations were also observed to alter the decoding specificity of the suppressor tRNA lysT(U70), which has a mutation in its acceptor stem. That result suggests that there is an interaction between the stem-loop region of helix 89 of 23S rRNA and the acceptor stem of tRNA during decoding and that the interaction is important for the decoding specificity of tRNA.^ Using gene manipulation procedures, I have constructed a new expression vector to express and purify the cellular protein factors required for a recently developed, realistic in vitro termination assay. The gene for each protein was cloned into the newly constructed vector in such a way that expression yielded a protein with an N-terminal affinity tag, for specific, rapid purification. The amino terminus was engineered so that, after purification, the unwanted N-terminal tag can be completely removed from the protein by thrombin cleavage, yielding a natural amino acid sequence for each protein. I have cloned the genes for EF-G and all three release factors into this new expression vector and the genes for all the other protein factors into a pCAL-n expression vector. These constructs will allow our laboratory group to quickly and inexpensively purify all the protein factors needed for the new in vitro termination assay. (Abstract shortened by UMI.) ^
Resumo:
By using molecular dynamics simulations, we have examined the binding of a hexaNAG substrate and two potential hydrolysis intermediates (an oxazoline ion and an oxocarbenium ion) to a family 19 barley chitinase. We find the hexaNAG substrate binds with all sugars in a chair conformation, unlike the family 18 chitinase which causes substrate distortion. Glu 67 is in a position to protonate the anomeric oxygen linking sugar residues D and E whereas Asn 199 serves to hydrogen bond with the C2′ N-acetyl group of sugar D, thus preventing the formation of an oxazoline ion intermediate. In addition, Glu 89 is part of a flexible loop region allowing a conformational change to occur within the active site to bring the oxocarbenium ion intermediate and Glu 89 closer by 4–5 Å. A hydrolysis product with inversion of the anomeric configuration occurs because of nucleophilic attack by a water molecule that is coordinated by Glu 89 and Ser 120. Issues important for the design of inhibitors specific to family 19 chitinases over family 18 chitinases also are discussed.
Resumo:
Infection by HIV-1 involves the fusion of viral and cellular membranes with subsequent transfer of viral genetic material into the cell. The HIV-1 envelope glycoprotein that mediates fusion consists of the surface subunit gp120 and the transmembrane subunit gp41. gp120 directs virion attachment to the cell–surface receptors, and gp41 then promotes viral–cell membrane fusion. A soluble, α-helical, trimeric complex within gp41 composed of N-terminal and C-terminal extraviral segments has been proposed to represent the core of the fusion-active conformation of the HIV-1 envelope. A thermostable subdomain denoted N34(L6)C28 can be formed by the N-34 and C-28 peptides connected by a flexible linker in place of the disulfide-bonded loop region. Three-dimensional structure of N34(L6)C28 reveals that three molecules fold into a six-stranded helical bundle. Three N-terminal helices within the bundle form a central, parallel, trimeric coiled coil, whereas three C-terminal helices pack in the reverse direction into three hydrophobic grooves on the surface of the N-terminal trimer. This thermostable subdomain displays the salient features of the core structure of the isolated gp41 subunit and thus provides a possible target for therapeutics designed selectively to block HIV-1 entry.
Resumo:
Familial amyloidosis–Finnish type (FAF) results from a single mutation at residue 187 (D187N or D187Y) within domain 2 of the actin-regulating protein gelsolin. The mutation somehow allows a masked cleavage site to be exposed, leading to the first step in the formation of an amyloidogenic fragment. We have performed NMR experiments investigating structural and dynamic changes between wild-type (WT) and D187N gelsolin domain 2 (D2). On mutation, no significant structural or dynamic changes occur at or near the cleavage site. Areas in conformational exchange are observed between β-strand 4 and α-helix 1 and within the loop region following β-strand 5. Chemical shift differences are noted along the face of α-helix 1 that packs onto the β-sheet, suggesting an altered conformation. Conformational changes within these areas can have an effect on actin binding and may explain why D187N gelsolin is inactive. {1H-15N} nuclear Overhauser effect and chemical shift data suggest that the C-terminal tail of D187N gelsolin D2 is less structured than WT by up to six residues. In the crystal structure of equine gelsolin, the C-terminal tail of D2 lies across a large cleft between domains 1 and 2 where the masked cleavage site sits. We propose that the D187N mutation destabilizes the C-terminal tail of D2 resulting in a more exposed cleavage site leading to the first proteolysis step in the formation of the amyloidogenic fragment.
Resumo:
The expression of virulence determinants in Staphylococcus aureus is controlled by global regulatory loci (e.g., sarA and agr). The sar (Staphylococcus accessory regulator) locus is composed of three overlapping transcripts (sarA P1, P3, and P2, transcripts initiated from the P1, P3, and P2 promoters, respectively), all encoding the 124-aa SarA protein. The level of SarA, the major regulatory protein, is partially controlled by the differential activation of the sarA promoters. We previously partially purified a 13.6-kDa protein, designated SarR, that binds to the sarA promoter region to down-modulate sarA transcription from the P1 promoter and subsequently SarA expression. SarR shares sequence similarity to SarA, and another SarA homolog, SarS. Here we report the 2.3 Å-resolution x-ray crystal structure of the dimeric SarR-MBP (maltose binding protein) fusion protein. The structure reveals that the SarR protein not only has a classic helix–turn–helix module for DNA binding at the major grooves, but also has an additional loop region involved in DNA recognition at the minor grooves. This interaction mode could represent a new functional class of the “winged helix” family. The dimeric SarR structure could accommodate an unusually long stretch of ≈27 nucleotides with two or four bending points along the course, which could lead to the bending of DNA by 90° or more, similar to that seen in the catabolite activator protein (CAP)–DNA complex. The structure also demonstrates the molecular basis for the stable dimerization of the SarR monomers and possible motifs for interaction with other proteins.
Swapping structural determinants of ribonucleases: an energetic analysis of the hinge peptide 16-22.
Resumo:
Bovine seminal ribonuclease (BS-RNase) is a homodimeric enzyme strictly homologous to the pancreatic ribonuclease (RNase A). Native BS-RNase is an equilibrium mixture of two distinct dimers differing in the interchange of the N-terminal segments and in their biological properties. The loop 16-22 plays a fundamental role on the relative stability of the two isomers. Both the primary and tertiary structures of the RNase A differ substantially from those of the seminal ribonuclease in the loop region 16-22. To analyze the possible stable conformations of this loop in both enzymes, structure predictions have been attempted, according to a procedure described by Palmer and Scheraga [Palmer, K. A. & Scheraga, H. A. (1992) J. Comput. Chem. 13, 329-350]. Results compare well with experimental x-ray structures and clarify the structural determinants that are responsible for the swapping of the N-terminal domains and for the peculiar properties of BS-RNase. Minimal modifications of RNase A sequence needed to form a stable swapped dimer are also predicted.
Resumo:
Proteolytic, cleavage in an exposed loop of human tartrate-resistant acid phosphatase (TRAcP) with trypsin leads to a significant increase in activity. At each pH value between 3.25 and 8.0 the cleaved enzyme is more active. Substrate specificity is also influenced by proteolysis. Only the cleaved form is able to hydrolyze unactivated substrates efficiently, and at pH > 6 cleaved TRAcP acquires a marked preference for ATP. The cleaved enzyme also has altered sensitivity to inhibitors. Interestingly, the magnitude and mode of inhibition by fluoride depends not only on the proteolytic state but also pH. The combined kinetic data imply a role of the loop residue D158 in catalysis in the cleaved enzyme. Notably, at low pH this residue may act as a proton donor for the leaving group. In this respect the mechanism of cleaved TRAcP resembles that of sweet potato purple acid phosphatase. (c) 2005 Elsevier Inc. Ail rights reserved.
Resumo:
Hydrophobins are small (similar to 100 aa) proteins that have an important role in the growth and development of mycelial fungi. They are surface active and, after secretion by the fungi, self-assemble into amphipathic membranes at hydrophobic/hydrophilic interfaces, reversing the hydrophobicity of the surface. In this study, molecular dynamics simulation techniques have been used to model the process by which a specific class I hydrophobin, SC3, binds to a range of hydrophobic/ hydrophilic interfaces. The structure of SC3 used in this investigation was modeled based on the crystal structure of the class II hydrophobin HFBII using the assumption that the disulfide pairings of the eight conserved cysteine residues are maintained. The proposed model for SC3 in aqueous solution is compact and globular containing primarily P-strand and coil structures. The behavior of this model of SC3 was investigated at an air/water, an oil/water, and a hydrophobic solid/water interface. It was found that SC3 preferentially binds to the interfaces via the loop region between the third and fourth cysteine residues and that binding is associated with an increase in a-helix formation in qualitative agreement with experiment. Based on a combination of the available experiment data and the current simulation studies, we propose a possible model for SC3 self-assembly on a hydrophobic solid/water interface.
Resumo:
Spermine is a potent, voltage-dependent blocker of the olfactory cyclic nucleotide-gated channel from both the intracellular and extracellular sides. However, its sites of action are unknown. This study investigated the external spermine binding site in the rat CNC alpha3 subunit. Neutralization of a glutamic acid residue (E342Q) in the P-loop region eliminated voltage-dependence of block by externally applied spermine. The charge-conservative E342D mutation had little effect on spermine block. Thus, E342 forms the binding site for externally applied spermine. However, spermine remained a potent voltage-independent blocker of the E342Q mutant channel, suggesting that the mutation either created a novel binding site outside the membrane electrical field or that it dramatically changed the properties of the existing pore site. (C) 2000 Elsevier Science Ireland Ltd. All rights reserved.