986 resultados para Logging Residue
Resumo:
Recognition by the T-cell receptor (TCR) of immunogenic peptides (p) presented by Class I major histocompatibility complexes (MHC) is the key event in the immune response against virus-infected cells or tumor cells. A study of the 2C TCR/SIYR/H-2K(b) system using a computational alanine scanning and a much faster binding free energy decomposition based on the Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) method is presented. The results show that the TCR-p-MHC binding free energy decomposition using this approach and including entropic terms provides a detailed and reliable description of the interactions between the molecules at an atomistic level. Comparison of the decomposition results with experimentally determined activity differences for alanine mutants yields a correlation of 0.67 when the entropy is neglected and 0.72 when the entropy is taken into account. Similarly, comparison of experimental activities with variations in binding free energies determined by computational alanine scanning yields correlations of 0.72 and 0.74 when the entropy is neglected or taken into account, respectively. Some key interactions for the TCR-p-MHC binding are analyzed and some possible side chains replacements are proposed in the context of TCR protein engineering. In addition, a comparison of the two theoretical approaches for estimating the role of each side chain in the complexation is given, and a new ad hoc approach to decompose the vibrational entropy term into atomic contributions, the linear decomposition of the vibrational entropy (LDVE), is introduced. The latter allows the rapid calculation of the entropic contribution of interesting side chains to the binding. This new method is based on the idea that the most important contributions to the vibrational entropy of a molecule originate from residues that contribute most to the vibrational amplitude of the normal modes. The LDVE approach is shown to provide results very similar to those of the exact but highly computationally demanding method.
Resumo:
This article describes the composition of fingermark residue as being a complex system with numerous compounds coming from different sources and evolving over time from the initial composition (corresponding to the composition right after deposition) to the aged composition (corresponding to the evolution of the initial composition over time). This complex system will additionally vary due to effects of numerous influence factors grouped in five different classes: the donor characteristics, the deposition conditions, the substrate nature, the environmental conditions and the applied enhancement techniques. The initial and aged compositions as well as the influence factors are thus considered in this article to provide a qualitative and quantitative review of all compounds identified in fingermark residue up to now. The analytical techniques used to obtain these data are also enumerated. This review highlights the fact that despite the numerous analytical processes that have already been proposed and tested to elucidate fingermark composition, advanced knowledge is still missing. Thus, there is a real need to conduct future research on the composition of fingermark residue, focusing particularly on quantitative measurements, aging kinetics and effects of influence factors. The results of future research are particularly important for advances in fingermark enhancement and dating technique developments.
Resumo:
Part I of this series of articles focused on the construction of graphical probabilistic inference procedures, at various levels of detail, for assessing the evidential value of gunshot residue (GSR) particle evidence. The proposed models - in the form of Bayesian networks - address the issues of background presence of GSR particles, analytical performance (i.e., the efficiency of evidence searching and analysis procedures) and contamination. The use and practical implementation of Bayesian networks for case pre-assessment is also discussed. This paper, Part II, concentrates on Bayesian parameter estimation. This topic complements Part I in that it offers means for producing estimates useable for the numerical specification of the proposed probabilistic graphical models. Bayesian estimation procedures are given a primary focus of attention because they allow the scientist to combine (his/her) prior knowledge about the problem of interest with newly acquired experimental data. The present paper also considers further topics such as the sensitivity of the likelihood ratio due to uncertainty in parameters and the study of likelihood ratio values obtained for members of particular populations (e.g., individuals with or without exposure to GSR).
Resumo:
This research involved two studies: one to determine the local geoid to obtain mean sea level elevation from a global positioning system (GPS) to an accuracy of ±2 cm, and the other to determine the location of roadside features such as mile posts and stop signs for safety studies, geographic information systems (GIS), and maintenance applications, from video imageries collected by a van traveling at traffic speed.
Resumo:
Heat shock protein 90 (Hsp90) is an essential chaperone involved in the fungal stress response that can be harnessed as a novel antifungal target for the treatment of invasive aspergillosis. We previously showed that genetic repression of Hsp90 reduced Aspergillus fumigatus virulence and potentiated the effect of the echinocandin caspofungin. In this study, we sought to identify sites of posttranslational modifications (phosphorylation or acetylation) that are important for Hsp90 function in A. fumigatus. Phosphopeptide enrichment and tandem mass spectrometry revealed phosphorylation of three residues in Hsp90 (S49, S288, and T681), but their mutation did not compromise Hsp90 function. Acetylation of lysine residues of Hsp90 was recovered after treatment with deacetylase inhibitors, and acetylation-mimetic mutations (K27A and K271A) resulted in reduced virulence in a murine model of invasive aspergillosis, supporting their role in Hsp90 function. A single deletion of lysine K27 or an acetylation-mimetic mutation (K27A) resulted in increased susceptibility to voriconazole and caspofungin. This effect was attenuated following a deacetylation-mimetic mutation (K27R), suggesting that this site is crucial and should be deacetylated for proper Hsp90 function in antifungal resistance pathways. In contrast to previous reports in Candida albicans, the lysine deacetylase inhibitor trichostatin A (TSA) was active alone against A. fumigatus and potentiated the effect of caspofungin against both the wild type and an echinocandin-resistant strain. Our results indicate that the Hsp90 K27 residue is required for azole and echinocandin resistance in A. fumigatus and that deacetylase inhibition may represent an adjunctive anti-Aspergillus strategy.
Resumo:
The calculation of elasticity parameters by sonic and ultra sonic wave propagation in saturated soils using Biot's theory needs the following variables : forpiation density and porosity (p, ø), compressional and shear wave velocities (Vp, Vs), fluid density, viscosity and compressibility (Pfi Ilfi Ki), matrix density and compressibility (p" K), The first four parameters can be determined in situ using logging probes. Because fluid and matrix characteristics are not modified during core extraction, they can be obtained through laboratory measurements. All parameters necessitate precise calibrations in various environments and for specific range of values encountered in soils. The slim diameter of boreholes in shallow geophysics and the high cost of petroleum equipment demand the use of specific probes, which usually only give qualitative results. The measurement 'of density is done with a gamma-gamma probe and the measurement of hydrogen index, in relation to porosity, by a neutron probe. The first step of this work has been carried out in synthetic formations in the laboratory using homogeneous media of known density and porosity. To establish borehole corrections different casings have been used. Finally a comparison between laboratory and in situ data in cored holes of known geometry and casing has been performed.
Resumo:
Soil water storage of Central Amazonian soil profiles in upland forest plots subjected to selective logging (in average, 8 trees or 34, 3 m³ of timber per hectare were removed) was measured in four layers, down to a depth of 70 cm. The study lasted 27-months and was divided in two phases: measurements were carried out nearly every week during the first 15 months; in the following year, five intensive periods of measurements were performed. Five damage levels were compared: (a) control (undisturbed forest plot); (b) centre of the clearing/gap; (c) edge of the gap; (d) edge of the remaining forest; and (e) remaining forest. The lowest values for water storage were found in the control (296 ± 19.1 mm), while the highest were observed (333 ± 25.8 mm) in the centre of the gap, during the dry period. In the older gaps (7.5-8.5 year old), soil water storage was similar to the remaining and the control forest, indicating a recovery of hydric soil properties to nearly the levels prior to selective logging.
Resumo:
The impact of wood loads on bulk density and preconsolidation pressure and of harvester and forwarder traffic on rut depth, bulk density and preconsolidation pressure of two Ultisols were examined in this study. Our objective was to quantify the threshold beyond which significant soil compaction and rutting would occur. This study was carried out in the county of Eunápolis, state of Bahia, Brazil, (16 º 23 ' 17 '' S and 39 º 10 ' 06 '' W; altitude 80 m asl) in two Ultisols (PAd2 and PAd3) with different texture classes, in experimental areas with eucalypt plantation. The study involved measurements at the wood load site and machine driving at specific locations in the forest during logging operations. The treatments consisted of one harvester pass and, 8, 16 and 40 passes of a fully loaded forwarder. Thresholds were established based on the rut depth and percentage of preconsolidation pressure values in the region of additional soil compaction defined in the bearing capacity model. The percentage of soil samples with values of preconsolidation pressure in the region of additional soil compaction indicated a greater susceptibility of PAd3 than of PAd2 to soil compaction. The threshold levels established here based on preconsolidation pressure and rut depth indicated that no more than eight forwarder passes should be allowed in loading operations in order to minimize soil compaction.
Resumo:
The irregular disposal of coal combustion residues has adverse impacts on terrestrial ecosystems. Pioneer plants and soil invertebrates play an important role in the recovery of these areas. The goal of this study was to investigate the colonization patterns of terrestrial isopods (Oniscidea) in leaf litter of three spontaneous pioneer plants (grass - Poaceae, shrub - Euphorbiaceae, tree - Anarcadiaceae) at sites used for fly ash or boiler slag disposal. The experiment consisted of eight blocks (four per disposal site) of 12 litter bags each (four per plant species) that were randomly removed after 6, 35, 70 or 140 days of field exposure. Three isopod species were found in the litter bags: Atlantoscia floridana (van Name, 1940) (Philosciidae; n = 116), Benthana taeniata Araujo & Buckup, 1994 (Philosciidae; n = 817) and Balloniscus sellowii (Brandt, 1833) (Balloniscidae; n = 48). The isopods colonized the three leaf-litter species equally during the exposure period. However, the pattern of leaf-litter colonization by these species suggests a conflict of objectives between high quality food and shelter availability. The occurrence of A. floridana and the abundance and fecundity of B. taeniata were influenced by the residue type, indicating that the isopods have different degrees of tolerance to the characteristics of the studied sites. Considering that terrestrial isopods are abundant detritivores and stimulate the humus-forming processes, it is suggested that they could have an indirect influence on the soil restoration of this area.
Resumo:
Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM). The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C) mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification), mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a) conventional tillage (CT) and (b) no tillage (NT) in combination with three cropping systems: (a) R0- monoculture system (soybean/wheat), (b) R1- winter crop rotation (soybean/wheat/soybean/black oat), and (c) R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat). The soil C-CO2 efflux was measured every 14 days for two years (48 measurements), by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between tillage systems were noticed for C-CO2 evolution. Soil C-CO2 effluxes followed a bi-modal pattern, with peaks in October/November and February/March. The highest emission was recorded in the summer and the lowest in the winter. The C-CO2 effluxes were weakly correlated to air temperature and not correlated to soil moisture. Based on the soil C conservation indexes investigated, NT associated to intensive crop rotation was more C conserving than CT with monoculture.
Resumo:
Summary
Resumo:
Swine residue (SR) applied as nutrient source of crops such as corn, bean, soybean and wheat, besides representing an environmental-friendly way of disposing of organic waste resulting from swine production, may significantly increase grain yields, replacing mineral fertilizer. The objective was to evaluate the effect of SR rates on corn, common bean, soybean and wheat yields from 2002 to 2007, in comparison with mineral fertilizer. The experiment was carried out at the Instituto Agronômico do Paraná - IAPAR, Pato Branco, PR and consisted of increasing SR rates (0, 15, 30, 45, and 60 m³ ha-1) and one treatment with mineral fertilizer (NPK 4-30-10), using 250 kg ha-1 for bean and 300 kg ha-1 for corn, soybean and wheat. Also, in the treatment with mineral fertilizer, 60, 120 and 90 kg ha-1 N was applied as topdressing to bean, corn and wheat, respectively. There were significant increases of grain yield in all evaluated years and crops with increasing SR rates, especially in the grass species under study. Also, with increasing SR rates applied every six months, K, P, Ca and Mg were accumulated in the soil and the pH increased. The application of 60 m³ ha-1 SR increased yields and exceeded the yield obtained with the recommended mineral fertilizer, indicating this amount as adequate for these crops.
Resumo:
Soil organic matter depletion caused by agricultural management systems have been identified as a critical problem in most tropical soils. The application of organic residues from agro-industrial activities can ameliorate this problem by increasing soil organic matter quality and quantity. Humic substances play an important role in soil conservation but the dynamics of their transformations is still poorly understood. This study evaluated the effect of compost application to two contrasting tropical soils (Inceptisol and Oxisol) for two years. Soil samples were incubated with compost consisting of sugarcane filter cake, a residue from the sugar industry, at 0, 40, 80, and 120 Mg ha-1. Filter cake compost changed the humic matter dynamics in both content and quality, affecting the soil mineralogical composition. It was observed that carbon mineralization was faster in the illite-containing Inceptisol, whereas humic acids were preserved for a longer period in the Oxisol. In both soils, compost application increased fulvic acid contents, favoring the formation of small hydrophilic molecules. A decrease in fluorescence intensity according to the incubation time was observed in the humic acids extracted from amended soils, revealing important chemical changes in this otherwise stable C pool.