885 resultados para Location-dependent control-flow patterns
Resumo:
Studies of carbon isotopes and cadmium in bottom-dwelling foraminifera from ocean sediment cores have advanced our knowledge of ocean chemical distributions during the late Pleistocene. Last Glacial Maximum data are consistent with a persistent high-ΣCO2 state for eastern Pacific deep water. Both tracers indicate that the mid-depth North and tropical Atlantic Ocean almost always has lower ΣCO2 levels than those in the Pacific. Upper waters of the Last Glacial Maximum Atlantic are more ΣCO2-depleted and deep waters are ΣCO2-enriched compared with the waters of the present. In the northern Indian Ocean, δ13C and Cd data are consistent with upper water ΣCO2 depletion relative to the present. There is no evident proximate source of this ΣCO2-depleted water, so I suggest that ΣCO2-depleted North Atlantic intermediate/deep water turns northward around the southern tip of Africa and moves toward the equator as a western boundary current. At long periods (>15,000 years), Milankovitch cycle variability is evident in paleochemical time series. But rapid millennial-scale variability can be seen in cores from high accumulation rate series. Atlantic deep water chemical properties are seen to change in as little as a few hundred years or less. An extraordinary new 52.7-m-long core from the Bermuda Rise contains a faithful record of climate variability with century-scale resolution. Sediment composition can be linked in detail with the isotope stage 3 interstadials recorded in Greenland ice cores. This new record shows at least 12 major climate fluctuations within marine isotope stage 5 (about 70,000–130,000 years before the present).
Resumo:
The use of microprocessor-based systems is gaining importance in application domains where safety is a must. For this reason, there is a growing concern about the mitigation of SEU and SET effects. This paper presents a new hybrid technique aimed to protect both the data and the control-flow of embedded applications running on microprocessors. On one hand, the approach is based on software redundancy techniques for correcting errors produced in the data. On the other hand, control-flow errors can be detected by reusing the on-chip debug interface, existing in most modern microprocessors. Experimental results show an important increase in the system reliability even superior to two orders of magnitude, in terms of mitigation of both SEUs and SETs. Furthermore, the overheads incurred by our technique can be perfectly assumable in low-cost systems.
Resumo:
Includes bibliographical references.
Resumo:
"September, 1990."
Resumo:
" ... contribution to North Central Project NC-137, 'Effect of changes in transportation on performance of the U.S. Agricultural Transportation System, 'and to Southern Regional Project S-176 Interregional marketing systems for grains and soybeans.'"--P. iii.
Resumo:
Particle flow patterns were investigated for wet granulation and dry powder mixing in ploughshare mixers using Positron Emission Particle Tracking (PEPT). In a 4-1 mixer, calcium carbonate with mean size 45 mum was granulated using a 50 wt.% solution of glycerol and water as binding fluid, and particle movement was followed using a 600-mum calcium hydroxy-phosphate tracer particle. In a 20-1 mixer, dry powder flow was studied using a 600-mum resin bead tracer particle to simulate the bulk polypropylene powder with mean size 600 mum. Important differences were seen between particle flow patterns for wet and dry systems. Particle speed relative to blade speed was lower in the wet system than in the dry system, with the ratios of average particle speed to blade tip speed for all experiments in the range 0.01-015. In the axial plane, the same particle motion was observed around each blade; this provides a significant advance for modelling flow in ploughshare mixers. For the future, a detailed understanding of the local velocity, acceleration and density variations around a plough blade will reveal the effects of flow patterns in granulating systems on the resultant distribution of granular product attributes such as size, density and strength. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
Timinganalysis of assembler code is essential to achieve the strongest possible guarantee of correctness for safety-critical, real-time software. Previous work has shown how timingconstrain ts on controlflow paths through high-level language programs can be formalised using the semantics of the statements comprisingthe path. We extend these results to assembler-level code where it becomes possible to not only determine timingconstrain ts, but also to verify them against the known execution times for each instruction. A minimal formal model is developed with both a weakest liberal precondition and a strongest postcondition semantics. However, despite the formalism’s simplicity, it is shown that complex timingb ehaviour associated with instruction pipeliningand iterative code can be modelled accurately.
Resumo:
This thesis describes work carried out to improve the fundamental modelling of liquid flows on distillation trays. A mathematical model is presented based on the principles of computerised fluid dynamics. It models the liquid flow in the horizontal directions allowing for the effects of the vapour through the use of an increased liquid turbulence, modelled by an eddy viscosity, and a resistance to liquid flow caused by the vapour being accelerated horizontally by the liquid. The resultant equations are similar to the Navier-Stokes equations with the addition of a resistance term.A mass-transfer model is used to calculate liquid concentration profiles and tray efficiencies. A heat and mass transfer analogy is used to compare theoretical concentration profiles to experimental water-cooling data obtained from a 2.44 metre diameter air-water distillation simulation rig. The ratios of air to water flow rates are varied in order to simulate three pressures: vacuum, atmospheric pressure and moderate pressure.For simulated atmospheric and moderate pressure distillation, the fluid mechanical model constantly over-predicts tray efficiencies with an accuracy of between +1.7% and +11.3%. This compares to -1.8% to -10.9% for the stagnant regions model (Porter et al. 1972) and +12.8% to +34.7% for the plug flow plus back-mixing model (Gerster et al. 1958). The model fails to predict the flow patterns and tray efficiencies for vacuum simulation due to the change in the mechanism of liquid transport, from a liquid continuous layer to a spray as the liquid flow-rate is reduced. This spray is not taken into account in the development of the fluid mechanical model. A sensitivity analysis carried out has shown that the fluid mechanical model is relatively insensitive to the prediction of the average height of clear liquid, and a reduction in the resistance term results in a slight loss of tray efficiency. But these effects are not great. The model is quite sensitive to the prediction of the eddy viscosity term. Variations can produce up to a 15% decrease in tray efficiency. The fluid mechanical model has been incorporated into a column model so that statistical optimisation techniques can be employed to fit a theoretical column concentration profile to experimental data. Through the use of this work mass-transfer data can be obtained.
Resumo:
Studies into the two-phase flow patterns produced on a sieve tray were carried out using an air-water simulator of 2.44 m in diameter. The flow patterns were investigated by a number of methods, direct observation using directional flow pointers; by water-cooling to simulate mass transfer; and by measurement of the height of clear liquid across the tray with manometers. The flow rates used were designed to show how the flow pattern changed with the change in the gas and liquid rates. The results from water-only studies on an un-perforated tray were compared with those produced on a sieve tray with holes of 12.7 mm diameter. The presence of regions on the sides of the tray where the liquid was circulating was noted from the water-only experiments. The presence and magnitude of the circulations was reduced when the air was passed through the liquid. These were similar to the findings of Hine (1990) and Chambers (1993). When circulation occurred, the flow separated at the ends of the inlet downcomer and circulations of up to 30% of the tray area were observed. Water-cooling and the manometer measurements were used to show the effect of the flow pattern on the tray efficiency and the height of clear liquid respectively. The efficiency was severely reduced by the presence of circulations. The height of clear liquid tended to rise in these areas. A comparison of data collected on trays with different hole diameters showed that the larger hole diameter inhibited the on-set of separation to a greater extent than small hole diameters. The tray efficiency was affected by a combination of the better mixing on smaller hole trays and detrimental effect of greater circulation on these trays. Work on a rectangular tray geometry was carried out to assess the effect of hole size on the height of clear liquid. It was found that the gradient on the outlet half of the tray was very small and that the highest clear liquid height was given by the highest hole size. Overall, the experiments helped to clarify the effect that the flow pattern had on the operation of the tray. It is hoped that the work can be of use in the development of models to predict the flow pattern and hence the tray efficiency.
Resumo:
Studies into gas-liquid flow patterns were carried out on commercial scale sieve trays where the ratio of froth depth to flow path length is typical of that found in practice. Experiments were conducted on a 2.44 m diameter air-water distillation simulator, in which flow patterns were investigated by direct observation, using directional flow pointers; by water cooling, to simulate mass transfer; and by height of clear liquid measurements across the tray. The flow rates used are typical of those found in practice. The approach adopted was to investigate the effect of the gas flow on the liquid flow by comparing water only flow patterns across an unperforated tray with air-water flow patterns on perforated trays. Initial gas-liquid contacting experiments on the 6.35 mm hole tray showed that, under certain conditions, the gas flow pattern beneath the test tray can have a significant effect on the tray liquid flow pattern such that gas-driven liquid circulation was produced. This was found to be a function of this particular air-water simulator design, and as far as is known this is the first time that this phenomenon has been observed. Consequently non-uniform gas flow effects were removed by modification of the gas distribution system. By eliminating gas circulation effects, the effect of the gas flow on the separation of liquid flow was similar to that obtained on the 1.0 mm hole tray (Hine, 1990). That is, flow separation occurred at the ends of the inlet downcomer which produced large circulating zones along the tray segments both on the non-perforated and perforated trays. The air when forced through the liquid, inhibited circulating flow such that it only occurred at high water inlet velocities. With the 6.35 mm hole tray, the growth and velocity of circulating flow was reduced at high superficial air velocities, and in the experiments to simulate distillation, liquid was in forward flow over most of the tray.
Resumo:
The thesis describes experimental work on sieve trays in an air-water simulator, 2.44 m in diameter. The liquid flow pattern, for flowrates similar to those used in commercial scale distillation, was observed experimentally by water cooling experiments, in which the temperature of the water is measured at over 100 positions over the tray area. The water is cooled by the rising air which is forced through the tray. A heat and mass transfer analogy is drawn whereby the water temperature is mapped to liquid concentration in mass transfer, and the water temperature profiles reveal how liquid channelling may reduce the tray efficiency. The first experiment was to observe the flow of water only over an unperforated tray. With the exception of very low weir loads, the flow separated at the ends of the inlet downcomer. This caused liquid to flow straight across the tray between the downcomers and large circulating regions to be formed in the side regions of the tray. The effect of the air crossflow on the flow pattern was then observed on a sieve tray of 10% free area with 1 mm diameter holes (such as is used in cryogenic distillation). The flow patterns developed on the tray were similar to those produced with water only on the unperforated tray, but at low weir loads the air crossflow prevented separation of the water flow and the associated circulating regions. At higher weir loads, liquid channelling down the centre of the tray and circulation in the side regions occurred. The percentage of the tray occupied by circulating liquid depended upon the velocity of the liquid entering the tray, which was set by the weir load and size of the gap under the inlet downcomer. The water cooling experiments showed that the temperature of the water in a circulating region is much lower than in other parts of the tray, indicating that the driving force for heat transfer is reduced. In a column section where trays (and circulating areas) are mounted on top of each other, the circulating regions will cause air (or vapour) passing through them to have a reduced change in temperature or concentration leading a loss in tray efficiency.
Resumo:
This work is concerned with the nature of liquid flow across industrial sieve trays operating in the spray, mixed, and the emulsified flow regimes. In order to overcome the practical difficulties of removing many samples from a commercial tray, the mass transfer process was investigated in an air water simulator column by heat transfer analogy. The temperature of the warm water was measured by many thermocouples as the water flowed across the single pass 1.2 m diameter sieve tray. The thermocouples were linked to a mini computer for the storage of the data. The temperature data were then transferred to a main frame computer to generate temperature profiles - analogous to concentration profiles. A comprehensive study of the existing tray efficiency models was carried out using computerised numerical solutions. The calculated results were compared with experimental results published by the Fractionation Research Incorporation (FRl) and the existing models did not show any agreement with the experimental results. Only the Porter and Lockett model showed a reasonable agreement with the experimental results for cenain tray efficiency values. A rectangular active section tray was constructed and tested to establish the channelling effect and the result of its effect on circular tray designs. The developed flow patterns showed predominantly flat profiles and some indication of significant liquid flow through the central region of the tray. This comfirms that the rectangular tray configuration might not be a satisfactory solution for liquid maldistribution on sieve trays. For a typical industrial tray the flow of liquid as it crosses the tray from the inlet to the outlet weir could be affected by the mixing of liquid by the eddy, momentum and the weir shape in the axial or the transverse direction or both. Conventional U-shape profiles were developed when the operating conditions were such that the froth dispersion was in the mixed regime, with good liquid temperature distribution while in the spray regime. For the 12.5 mm hole diameter tray the constant temperature profiles were found to be in the axial direction while in the spray regime and in the transverse direction for the 4.5 mm hole tray. It was observed that the extent of the liquid stagnant zones at the sides of the tray depended on the tray hole diameter and was larger for the 4.5 mm hole tray. The liquid hold-up results show a high liquid hold-up at the areas of the tray with low liquid temperatures, this supports the doubts about the assumptions of constant point efficiency across an operating tray. Liquid flow over the outlet weir showed more liquid flow at the centre of the tray at high liquid loading with low liquid flow at both ends of the weir. The calculated results of the point and tray efficiency model showed a general increase in the calculated point and tray efficiencies with an increase in the weir loading, as the flow regime changed from the spray to the mixed regime the point and the tray efficiencies increased from approximately 30 to 80%.Through the mixed flow regime the efficiencies were found to remain fairly constant, and as the operating conditions were changed to maintain an emulsified flow regime there was a decrease in the resulting efficiencies. The results of the estimated coefficient of mixing for the small and large hole diameter trays show that the extent of liquid mixing on an operating tray generally increased with increasing capacity factor, but decreased with increasing weir loads. This demonstrates that above certain weir loads, the effect of eddy diffusion mechanism on the process of liquid mixing on an operating tray to be negligible.
Resumo:
This paper presents the development of a modelling study for part of the Birmingham area. Restricted access and model resolutions have limited wide applications of some of the previously developed models. The study area covers approximately 221 km2, and is underlain geologically, by a multi-layer setup with varied hydraulic properties. The basal aquifer unit is the Kidderminster sandstone Formation, overlain by the Wildmoor and Bromsgrove sandstone Formations. The presence of the Birmingham fault which acts as low permeability barrier demarcates the eastern and southern boundaries. The western boundary is defined by the presence of crystallised rocks and coal measures, while a groundwater divide defines the northern boundary. The estimated recharge flux is 112 mm/yr. The ranges of calibrated values obtained for horizontal and vertical hydraulic conductivities are 5.787x10-6 - 2.315x10-5 m/s and 5.787x10-8 - 1.157x10-7 m/s, respectively. Corresponding values obtained for the specific yield and specific storage are 0.10 - 0.12, and 1x10 -4 - 5x10 -4. The calculated numerical error is generally much less than 0.1 %. Hydraulic layering within the Permo-Triassic sandstone aquifer is thought to account for the large vertical anisotropy. Although, uncertainties are associated with the use of a simplistic delay approach to characterise the effects of the unsaturated zone, the modelled values are comparable with those obtained in the literature, and the flow pattern predictions appear to be realistic. © Research India Publications.
Resumo:
This dissertation presents dynamic flow experiments with fluorescently labeled platelets to allow for spatial observation of wall attachment in inter-strut spacings, to investigate their relationship to flow patterns. Human blood with fluorescently labeled platelets was circulated through an in vitro system that produced physiologic pulsatile flow in (1) a parallel plate blow chamber that contained two-dimensional (2D) stents that feature completely recirculating flow, partially recirculating flow, and completely reattached flow, and (2) a three-dimensional (3D) cylindrical tube that contained stents of various geometric designs. ^ Flow detachment and reattachment points exhibited very low platelet deposition. Platelet deposition was very low in the recirculation regions in the 3D stents unlike the 2D stents. Deposition distal to a strut was always high in 2D and 3D stents. Spirally recirculating regions were found in 3D unlike in 2D stents, where the deposition was higher than at well-separated regions of recirculation. ^