911 resultados para Load curves


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information and Communication Technologies (ICTs) provide great promise for the future of education. In the Asia-Pacific region, many nations have started working towards the comprehensive development of infrastructure to enable the development of strong networked educational systems. In Queensland there have been significant initiatives in the past decade to support the integration of technology in classrooms and to set the conditions for the enhancement of teaching and learning with technology. One of the great challenges is to develop our classrooms to make the most of these technologies for the benefit of student learning. Recent research and theory into cognitive load, suggests that complex information environments may well impose a barrier on student learning. Further, it suggests that teachers have the capacity to mitigate against cognitive load through the way they prepare and support students engaging with complex information environments. This chapter compares student learning at different levels of cognitive load to show that learning is enhanced when integrating pedagogies are employed to mitigate against high-load information environments. This suggests that a mature policy framework for ICTs in education needs to consider carefully the development of professional capacities to effectively design and integrate technologies for learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes the performance of some of the widely used voltage stability indices, namely, singular value, eigenvalue, and loading margin with different static load models. Well-known ZIP model is used to represent loads having components with different power to voltage sensitivities. Studies are carried out on a 10-bus power system and the New England 39-bus power system models. The effects of variation of load model on the performance of the voltage stability indices are discussed. The choice of voltage stability index in the context of load modelling is also suggested in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (Nmm−1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived froma single 2D radiographic image. Methods: 18 excised human femora had previously been quantitative computed tomography scanned, from which 2D BMD-equivalent radiographic images were derived, and mechanically tested to failure in a stance-loading configuration. A 3D proximal femur shape was generated from each 2D radiographic image and used to construct 3D-FEA models. Results: The coefficient of determination (R2%) to predict failure load was 54.5% for BMD and 80.4% for 3D-FEXI. Conclusions: This ex vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD. This approach may be readily extended to routine clinical BMD images derived by dual energy X-ray absorptiometry. Crown Copyright © 2009 Published by Elsevier Ltd on behalf of IPEM. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The knee forces and moments estimated by inverse dynamics and directly measured by a multiaxial transducer were compared during the gait of a transfemoral amputee. The estimated and directly measured forces and moments were relatively close. However, 3D inverse dynamics estimated only partially the forces and moments associated with the deformation of the prosthetic foot and locking of knee mechanism.