959 resultados para Litter decomposition


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A produção de folhedo e a taxa de decomposição de folhedo (k) foram estimadas, no período de 2.8.85 a 10.8.86, numa área de 1 ha de mata atlântica de encosta (60º de inclinação e altitude de 140m), no município do Guarujá (Lat. S 24º16'; Long. W 46º19'), Estado de São Paulo. A queda pluviométrica anual média é de 2050 mm e não há estação seca definida. O solo é argilo-arenoso e ácido, com pH variando entre 3 e 4. A produção anual de folhedo foi de 7925 kg/ha. A fração folhas contribuiu com 5040 kg/ha seguida pelas frações ramos (1950 kg/ha), flores (491 kg/ha), frutos (222 kg/ha) e material de origem animal (222 kg/ha). A produção de folhedo e das frações componentes foi contínua durante todo o ano. Os valores mensais de produção não revelaram nenhum padrão sazonal. A taxa de decomposição (k) foi estimada para condições de equilíbrio dinâmico (0,72) e também utilizando a porcentagem de peso remanescente da fração foliar (0,83). O tempo médio para a decomposição de 50% do folhedo foi de 350 dias.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and aims Eucalyptus plantations cover 20 million hectares on highly weathered soils. Large amounts of nitrogen (N) exported during harvesting lead to concerns about their sustainability. Our goal was to assess the potential of introducing A. mangium trees in highly productive Eucalyptus plantations to enhance soil organic matter stocks and N availability. Methods A randomized block design was set up in a Brazilian Ferralsol soil to assess the effects of mono-specific Eucalyptus grandis (100E) and Acacia mangium (100A) stands and mixed plantations (50A:50E)on soil organic matter stocks and net N mineralization. Results A 6-year rotation of mono-specific A. mangium plantations led to carbon (C) and N stocks in the forest floor that were 44% lower and 86% higher than in pure E. grandis stands, respectively. Carbon and N stocks were not significantly different between the three treatments in the 0-15 cm soil layer. Field incubations conducted every 4 weeks for the two last years of the rotation estimated net soil N mineralization in 100A and 100E at 124 and 64 kg ha(-1) yr(-1), respectively. Nitrogen inputs to soil with litterfall were of the same order as net N mineralization. Conclusions Acacia mangium trees largely increased the turnover rate of N in the topsoil. Introducing A. mangium trees might improve mineral N availability in soils where commercial Eucalyptus plantations have been managed for a long time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biogeochemical cycles of carbon (C), nitrogen (N) and phosphorus (P) are interlinked by primary production, respiration and decomposition in terrestrial ecosystems. It has been suggested that the C, N and P cycles could become uncoupled under rapid climate change because of the different degrees of control exerted on the supply of these elements by biological and geochemical processes. Climatic controls on biogeochemical cycles are particularly relevant in arid, semi-arid and dry sub-humid ecosystems (drylands) because their biological activity is mainly driven by water availability. The increase in aridity predicted for the twenty-first century in many drylands worldwide may therefore threaten the balance between these cycles, differentially affecting the availability of essential nutrients. Here we evaluate how aridity affects the balance between C, N and P in soils collected from 224 dryland sites from all continents except Antarctica. We find a negative effect of aridity on the concentration of soil organic C and total N, but a positive effect on the concentration of inorganic P. Aridity is negatively related to plant cover, which may favour the dominance of physical processes such as rock weathering, a major source of P to ecosystems, over biological processes that provide more C and N, such as litter decomposition. Our findings suggest that any predicted increase in aridity with climate change will probably reduce the concentrations of N and C in global drylands, but increase that of P. These changes would uncouple the C, N and P cycles in drylands and could negatively affect the provision of key services provided by these ecosystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Climate change in the Arctic is predicted to increase plant productivity through decomposition-related enhanced nutrient availability. However, the extent of the increase will depend on whether the increased nutrient availability can be sustained. To address this uncertainty, I assessed the response of plant tissue nutrients, litter decomposition rates, and soil nutrient availability to experimental climate warming manipulations, extended growing season and soil warming, over a 7 year period. Overall, the most consistent effect was the year-to-year variability in measured parameters, probably a result of large differences in weather and time of snowmelt. The results of this study emphasize that although plants of arctic environments are specifically adapted to low nutrient availability, they also posses a suite of traits that help to reduce nutrient losses such as slow growth, low tissue concentrations, and low tissue turnover that result in subtle responses to environmental changes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Decomposition was studied in a reciprocal litter transplant experiment to examine the effects of forest type, litter quality and their interaction on leaf decomposition in four tropical forests in south-east Brazil. Litterbags were used to measure decomposition of leaves of one tree species from each forest type: Calophyllum brasiliense from restinga forest; Guapira opposita from Atlantic forest; Esenbeckia leiocarpa from semi-deciduous forest; and Copaifera langsdorffii from cerradao. Decomposition rates in rain forests (Atlantic and restinga) were twice as fast as those in seasonal forests (semi-deciduous and cerradao), suggesting that intensity and distribution of precipitation are important predictors of decomposition rates at regional scales. Decomposition rates varied by species, in the following order: E. leiocarpa > C. langsdorffii > G. opposita > C. brasiliense. However, there was no correlation between decomposition rates and chemical litter quality parameters: C:N, C:P, lignin concentration and lignin:N. The interaction between forest type and litter quality was positive mainly because C. langsdorffii decomposed faster than expected in its native forest. This is a potential indication of a decomposer`s adaptation to specific substrates in a tropical forest. These findings suggest that besides climate, interactions between decomposers and plants might play an essential role in decomposition processes and it must be better understood.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plant litter and fine roots are important in maintaining soil organic carbon (C) levels as well as for nutrient cycling. The decomposition of surface-placed litter and fine roots of wheat ( Triticum aestivum ), lucerne ( Medicago sativa ), buffel grass ( Cenchrus ciliaris ), and mulga ( Acacia aneura ), placed at 10-cm and 30-cm depths, was studied in the field in a Rhodic Paleustalf. After 2 years, = 60% of mulga roots and twigs remained undecomposed. The rate of decomposition varied from 4.2 year -1 for wheat roots to 0.22 year -1 for mulga twigs, which was significantly correlated with the lignin concentration of both tops and roots. Aryl+O-aryl C concentration, as measured by 13 C nuclear magnetic resonance spectroscopy, was also significantly correlated with the decomposition parameters, although with a lower R 2 value than the lignin concentration. Thus, lignin concentration provides a good predictor of litter and fine root decomposition in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between organic matter (OM) lability and temperature sensitivity is disputed, with recent observations suggesting that responses of relatively more resistant OM to increased temperature could be greater than, equivalent to, or less than responses of relatively more labile OM. This lack of clear understanding limits the ability to forecast carbon (C) cycle responses to temperature changes. Here, we derive a novel approach (denoted Q(10-q)) that accounts for changes in OM quality during decomposition and use it to analyze data from three independent sources. Results from new laboratory soil incubations (labile Q(10-q)=2.1 +/- 0.2; more resistant Q(10-q)=3.8 +/- 0.3) and reanalysis of data from other soil incubations reported in the literature (labile Q(10-q)=2.3; more resistant Q(10-q)=3.3) demonstrate that temperature sensitivity of soil OM decomposition increases with decreasing soil OM lability. Analysis of data from a cross-site, field litter bag decomposition study (labile Q(10-q)=3.3 +/- 0.2; resistant Q(10-q)=4.9 +/- 0.2) shows that litter OM follows the same pattern, with greater temperature sensitivity for more resistant litter OM. Furthermore, the initial response of cultivated soils, presumably containing less labile soil OM (Q(10-q)=2.4 +/- 0.3) was greater than that for undisturbed grassland soils (Q(10-q)=1.7 +/- 0.1). Soil C losses estimated using this approach will differ from previous estimates as a function of the magnitude of the temperature increase and the proportion of whole soil OM comprised of compounds sensitive to temperature over that temperature range. It is likely that increased temperature has already prompted release of significant amounts of C to the atmosphere as CO2. Our results indicate that future losses of litter and soil C may be even greater than previously supposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature sensitivity of decomposition of different soil organic matter (SOM) fractions was studied with laboratory incubations using 13C and 14C isotopes to differentiate between SOM of different age. The quality of SOM and the functionality and composition of microbial communities in soils formed under different climatic conditions were also studied. Transferring of organic layers from a colder to a warmer climate was used to assess how changing climate, litter input and soil biology will affect soil respiration and its temperature sensitivity. Together, these studies gave a consistent picture on how warming climate will affect the decomposition of different SOM fractions in Finnish forest soils: the most labile C was least temperature sensitive, indicating that it is utilized irrespective of temperature. The decomposition of intermediate C, with mean residence times from some years to decades, was found to be highly temperature sensitive. Even older, centennially cycling C was again less temperature sensitive, indicating that different stabilizing mechanisms were limiting its decomposition even at higher temperatures. Because the highly temperature sensitive, decadally cycling C, forms a major part of SOM stock in the organic layers of the studied forest soils, these results mean that these soils could lose more carbon during the coming years and decades than estimated earlier. SOM decomposition in boreal forest soils is likely to increase more in response to climate warming, compared to temperate or tropical soils, also because the Q10 is temperature dependent. In the northern soils the warming will occur at a lower temperature range, where Q10 is higher, and a similar increase in temperature causes a higher relative increase in respiration rates. The Q10 at low temperatures was found to be inversely related to SOM quality. At higher temperatures respiration was increasingly limited by low substrate availability.