961 resultados para Lithium batteries


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Enterprise Ireland (Project CFTD07325). European Commission (EU Framework 7 project Nanofunction, (Beyond CMOS Nanodevices for Adding Functionalities to CMOS) www.Nanofunction.eu EU ICT Network of Excellence, Grant No.257375)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Highly stable and crystalline V(2)O(5) nanoparticles with an average diameter of 15 nm have been easily prepared by thermal treatment of a bariandite-like vanadium oxide, V(10)O(24)center dot 9H(2)O. Their characterization was carried out by powder X-ray diffractometry (XRD). Fourier transform infrared (FT-IR) and Raman spectroscopies, and transmission electron microscopy (TEM). The fibrous and nanostructured film obtained by electrophoretic deposition of the V(2)O(5) nanoparticles showed good electroactivity when submitted to cyclic voltammetry in an ionic liquid-based electrolyte. The use of this film for the preparation of a nanostructured electrode led to an improvement of about 50% in discharge capacity values when compared with similar electrodes obtained by casting of a V(2)O(5) xerogel. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High conductivity in single ion conducting polymer electrolytes is still the ultimate aim for many electrochemical devices such as secondary lithium batteries. Achieving effective ion dissociation in these cases remains a challenge since the active ion tends to remain in close proximity to the backbone charge as a result of a low degree of ion dissociation. A unique aspect of this dissociation problem in polyelectrolytes is the repulsion between the backbone charges created by dissociation. One way of enhancing ion dissociation in polyelectrolyte systems is to use copolymers in which only a fraction (<20%) of the mer units are charged and where the comonomer is itself chosen to be polar and preferably to be compatible with potential solvents. We have also found that certain dissociation enhancers based on ionic liquids or boroxine ring compounds can lead to high ionic conductivity. In the cases where an ionic liquid is used as the solvent in a polyelectrolyte gel, the viscosity of the ionic liquid and its hydrophilicity are critical to achieving high conductivity. Compounds based on the dicyanamide anion appear to be very effective ionic solvents; polyelectrolyte gels incorporating such ionic liquids exhibit conductivities as high as 10−2 S/cm at room temperature. In the case of boroxine ring dissociation enhancers, gels based on poly(lithium-2-acrylamido-2-methyl-1-propanesulfonate) and ethylene carbonate produce conductivities approaching 10−3 S/cm. This paper will discuss these approaches for achieving higher conductivity in polyelectrolyte materials and suggest future directions to ensure single ion transport.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aluminium, as the current collector in lithium batteries, has shown reduced corrosion susceptibility in room temperature molten salts (1, 2). Moreover, previous studies have established that corrosion mitigation is achieved on magnesium alloys using ionic liquids pretreatments (3, 4). This paper investigated the anodisation of AA5083 aluminium alloy in Trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfony) ([P6,6,6,14][NTf2]) ionic liquid by applying a constant current followed by holding at the maximum potential for a period of time. Potentiodynamic polarisation results show that the treated surfaces were more corrosion resistant in 0.1 M sodium chloride solution compared with the control specimen. The anodising treatment was effective both in shifting the free corrosion potential to more noble values and in suppressing the corrosion current. Optical microscope and optical profilometry images indicated that an anodising film was deposited onto the alloy surface, which is thought to have inhibited corrosion in chloride environment. Further characterisation of the anodising film will be carried out in future work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of new liquid and solid state electrolytes is paramount for the advancement of electrochemical devices such as lithium batteries and solar cells. Ionic liquids have shown great promise in both these applications. Here we demonstrate the use of phosphonium cations with small alkyl chain substituents, in combination with a range of different anions, to produce a variety of new halide free ionic liquids that are fluid, conductive and with sufficient thermal stability for a range of electrochemical applications. Walden plot analysis of the new phosphonium ionic liquids shows that these can be classed as "good" ionic liquids, with low degrees of ion pairing and/or aggregation, and the lithium deposition and stripping from one of these ionic liquids has been demonstrated. Furthermore, for the first time phosphonium cations have been used to form a range of organic ionic plastic crystals. These materials can show significant ionic conductivity in the solid state and thus are of great interest as potential solid-state electrolyte materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding the ion transport behavior of organic ionic plastic crystals (OIPCs) is crucial for their potential application as solid electrolytes in various electrochemical devices such as lithium batteries. In the present work, the ion transport mechanism is elucidated by analyzing experimental data (single-crystal XRD, multinuclear solid-state NMR, DSC, ionic conductivity, and SEM) as well as the theoretical simulations (second moment-based solid static NMR line width simulations) for the OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate ([P1,2,2,4][PF6]). This material displays rich phase behavior and advantageous ionic conductivities, with three solid–solid phase transitions and a highly “plastic” and conductive final solid phase in which the conductivity reaches 10–3 S cm–1. The crystal structure shows unique channel-like packing of the cations, which may allow the anions to diffuse more easily than the cations at lower temperatures. The strongly phase-dependent static NMR line widths of the 1H, 19F, and 31P nuclei in this material have been well simulated by different levels of molecular motions in different phases. Thus, drawing together of the analytical and computational techniques has allowed the construction of a transport mechanism for [P1,2,2,4][PF6]. It is also anticipated that utilization of these techniques will allow a more detailed understanding of the transport mechanisms of other plastic crystal electrolyte materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Significant progress has been made recently in the development of Organic Ionic Plastic Crystals (OIPCs), a unique family of solid state electrolytes with applications in electrochemical devices such as lithium batteries and dye-sensitised solar cells. The negligible volatility of OIPCs renders them more suitable than molecular species for long-term device use, while the high thermal and electrochemical stability of many OIPCs fulfils an essential requirement for solid state electrolytes for many device applications. However, the complex mechanisms of conduction through these materials, both in their pure state and in the presence of a small amount of a second component (such as lithium salts to enable their use in lithium batteries) are still not fully understood. At the same time, the range of anions and cations utilised in the synthesis of plastic crystal phases continues to increase. This perspective concentrates on recent research into both fundamental and device-oriented aspects of these materials. Important fundamental understanding of the physical properties and transport mechanisms of different OIPCs has been achieved through use of techniques including variable temperature solid-state NMR and crystallographic analysis, as well as detailed molecular dynamics simulations. In parallel, the applicability of these materials as electrolytes for dye-sensitised solar cells and lithium batteries is being more widely demonstrated. The possibility of using OIPCs as solid state electrolytes for fuel cells is also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organic ionic plastic crystals (OIPCs) are attractive as solid-state electrolytes for electrochemical devices such as lithium-ion batteries and solar and fuel cells. OIPCs offer high ionic conductivity, nonflammability, and versatility of molecular design. Nevertheless, intrinsic ion transport behavior of OIPCs is not fully understood, and their measured properties depend heavily on thermal history. Solid-state magnetic resonance imaging experiments reveal a striking image contrast anisotropy sensitive to the orientation of grain boundaries in polycrystalline OIPCs. Probing triethyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1222FSI) samples with different thermal history demonstrates vast variations in microcrystallite alignment. Upon slow cooling from the melt, microcrystallites exhibit a preferred orientation throughout the entire sample, leading to an order of magnitude increase in conductivity as probed using impedance spectroscopy. This investigation describes both a new conceptual window and a new characterization method for understanding polycrystalline domain structure and transport in plastic crystals and other solid-state conductors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability to image electrochemical processes in situ using nuclear magnetic resonance imaging (MRI) offers exciting possibilities for understanding and optimizing materials in batteries, fuel cells and supercapacitors. In these applications, however, the quality of the MRI measurement is inherently limited by the presence of conductive elements in the cell or device. To overcome related difficulties, optimal methodologies have to be employed. We show that time-efficient three dimensional (3D) imaging of liquid and solid lithium battery components can be performed by Sectoral Fast Spin Echo and Single Point Imaging with T1 Enhancement (SPRITE), respectively. The former method is based on the generalized phase encoding concept employed in clinical MRI, which we have adapted and optimized for materials science and electrochemistry applications. Hard radio frequency pulses, short echo spacing and centrically ordered sectoral phase encoding ensure accurate and time-efficient full volume imaging. Mapping of density, diffusivity and relaxation time constants in metal-containing liquid electrolytes is demonstrated. 1, 2 and 3D SPRITE approaches show strong potential for rapid high resolution (7)Li MRI of lithium electrode components.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of transition metal nitrides and oxynitrides, which are actively investigated today as electrode materials in a wide range of energy conversion and storage devices, possess an oxide layer on the surface. Upon exposure to ambient air, properties of this layer progressively change in the process known as "ageing". Since a number of electrochemical processes involve the surface or sub-surface layers of the active electrode compounds only, ageing could have a significant effect on the overall performance of energy conversion and storage devices. In this work, the influence of the ageing of tungsten and molybdenum oxynitrides on their electrochemical properties in supercapacitors is explored for the first time. Samples are synthesised by the temperature-programmed reduction in NH3 and are treated with different gases prior to exposure to air in order to evaluate the role of passivation in the ageing process. After the synthesis, products are subjected to controlled ageing and are characterised by low temperature nitrogen adsorption, X-ray photoelectron spectroscopy and transmission electron microscopy. Capacitive properties of the compounds are evaluated by performing cyclic voltammetry and galvanostatic charge and discharge measurements in the 1 M H2SO4 electrolyte. © 2014 the Partner Organisations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The application of organic ionic plastic crystals (OIPCs) as a new class of solid electrolyte for energy storage devices such as lithium batteries and, more recently, sodium batteries is attracting increasing attention. Key to this is achieving sufficient target ion transport through the material. This requires fundamental understanding of the structure and dynamics of OIPCs that have been doped with the necessary lithium or sodium salts. Here we report, for the first time, the atomic level structure and transport of both lithium and sodium ions in the plastic crystalline phases of an OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate. These molecular dynamics simulations reveal two types of coordination geometries of the alkali metal ion first solvation shells, which cooperate closely with the metal ion hopping motion. The significantly different ion migration rates between two metal ion doped systems could also be related to the differences in solvation structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

LiCoO2 powders were prepared by combustion synthesis, using metallic nitrates as the oxidant and metal sources and urea as fuel. A small amount of the LiCoO2 phase was obtained directly from the combustion reaction, however, a heat treatment was necessary for the phase crystallization. The heat treatment was performed at the temperature range from 400 up to 700 degreesC for 12 h. The powders were characterized by X-ray diffraction (XRD), X ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and specific surface area values were obtained by BET isotherms. Composite electrodes were prepared using a mixture of LiCoO2, carbon black and poly(vinylidene fluoride) (PVDF) in the 85:10:5% w/w ratio. The electrochemical behavior of these composites was evaluated in ethylene carbonate/dimethylcarbonate solution, using lithium perchlorate as supporting electrolyte. Cyclic voltammograms showed one reversible redox process at 4.0/3.85 V and one irreversible redox process at 3.3 V for the LiCoO2 obtained after a post-heat treatment at 400 and 500 degreesC.Raman spectroscopy showed the possible presence of LiCoO2 with cubic structure for the material obtained at 400 and 500 degreesC. This result is in agreement with X-ray data with structural refinement for the LiCoO2 powders obtained at different temperatures using the Rietveld method. Data from this method showed the coexistence of cubic LiCoO2 (spinel) and rhombohedral (layered) structures when LiCoO2 was obtained at lower temperatures (400 and 500 degreesC). The single rhombohedral structure for LiCoO2 was obtained after post-heat treatment at 600 degreesC. The maximum energy capacity in the first discharge was 136 mA g(-1) for the composite electrode based on LiCoO2 obtained after heat treatment at 700 degreesC. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A preparation method for a new electrode material based on the LiNi0.8Co0.2O2/polyaniline (PANI) composite is reported. This material is prepared by in situ polymerization of aniline in the presence of LiNi0.8Co0.2O2 assisted by ultrasonic irradiation. The materials are characterized by XRD, TG-DTA, FTIR, XPS, SEM-EDX, AFM, nitrogen adsorption (BET surface area) and electrical conductivity measurements. PANI in the emeraldine salt form interacts with metal-oxide particles to assure good connectivity. The dc electrical conductivity measurements at room temperature indicate that conductivity values are one order of magnitude higher in the composite than in the oxide alone. This behavior determines better reversibility for Li-insertion in charge-discharge cycles compared to the pristine mixed oxide when used as electrode of lithium batteries. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PANI-LiNi0.8Co0.2O2 nanocomposite material with improved properties as positive electrode was prepared by a new synthesis method. In a first step, LiNi0.8Co0.2O2 mixed oxide in the form of a fine powder was dispersed in aniline and this suspension was sprayed on the surface of an aqueous solution of HCl and ammonium peroxodisulfate. The resulting PANI-LiNi0.8Co0.2O2 nanocomposite is spontaneously formed by polymerization of the aniline molecules present in the drops together with small particles of the oxide. This method induces the formation of nanocomposites showing a better distribution of the oxide particles in the polymer matrix than that observed in related PANI-LiNi0.8Co0.2O2 microcomposites prepared under ultrasound irradiation to disperse the oxide particles during PANI polymerization. Measurements of electrical conductivity and zeta potential, as well as structural characterization of PANI-LiNi0.8Co0.2O2 nanocomposites, reveal the existence of relatively strong interactions between the conducting polymer and the oxide particles. This feature determines higher values of the electrical conductivity (0.5 S cm(-1)) and of the average operative voltage (3.6 V), as well as of other technological parameters of the nanocomposite when it is used as the positive electrode of rechargeable lithium batteries, in comparison to those of the related microcomposite materials already reported.