984 resultados para Liquid assisted sintering
Resumo:
We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet -- matrix-assisted laser desorption/ionisation -- mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. The low-femtomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydroxybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and low-mass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.
Resumo:
We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet - matrix-assisted laser desorption/ ionisation - mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. U. Am. Soc. Mass Spectrom. 1998, 9, 166-174). The low-ferntomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydrox-ybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and lowmass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.
Resumo:
Microwave (MW)-assisted cellulose dissolution in ionic liquids (ILs) has routinely led either to incomplete biopolymer solubilization, or its degradation. We show that these problems can be avoided by use of low-energy MW heating, coupled with efficient stirring. Dissolution of microcrystalline cellulose in the IL 1-allyl-3-methylimidazolium chloride has been achieved without changing its degree of polymerization; regenerated cellulose showed pronounced changes in its index of crystallinity, surface area, and morphology. MW-assisted functionalization of MCC by ethanoic, propanoic, butanoic, pentanoic, and hexanoic anhydrides has been studied. Compared with conventional heating, MW irradiation has resulted in considerable decrease in dissolution and reaction times. The value of the degree of substitution (DS) was found to be DS(ethanoate) > DS(propanoate) > DS(butanoate). The values of DS(pentanoate) and DS(hexanoate) were found to be slightly higher than DS(ethanoate). This surprising dependence on the chain length of the acylating agent has been reported before, but not rationalized. On the basis of the rate constants and activation parameters of the hydrolysis of ethanoic, butanoic, and hexanoic anhydrides in aqueous acetonitrile (a model acyl transfer reaction), we suggest that this result may be attributed to the balance between two opposing effects, namely, steric crowding and (cooperative) hydrophobic interactions between the anhydride and the cellulosic surface, whose lipophilicity has increased, due to its partial acylation. Four ethanoate-based mixed esters were synthesized by the reaction with a mixture of the two anhydrides; the ethanoate moiety predominated in all products. The DS is reproducible and the IL is easily recycled. (C) 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 134-143, 2010
Resumo:
Twelve commercially available edible marine algae from France, Japan and Spain and the certified reference material (CRM) NIES No. 9 Sargassum fulvellum were analyzed for total arsenic and arsenic species. Total arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) after microwave digestion and ranged from 23 to 126 μg g−1. Arsenic species in alga samples were extracted with deionized water by microwave-assisted extraction and showed extraction efficiencies from 49 to 98%, in terms of total arsenic. The presence of eleven arsenic species was studied by high performance liquid chromatography–ultraviolet photo-oxidation–hydride generation atomic–fluorescence spectrometry (HPLC–(UV)–HG–AFS) developed methods, using both anion and cation exchange chromatography. Glycerol and phosphate sugars were found in all alga samples analyzed, at concentrations between 0.11 and 22 μg g−1, whereas sulfonate and sulfate sugars were only detected in three of them (0.6-7.2 μg g−1). Regarding arsenic toxic species, low concentration levels of dimethylarsinic acid (DMA) (<0.9 μg g−1) and generally high arsenate (As(V)) concentrations (up to 77 μg g−1) were found in most of the algae studied. The results obtained are of interest to highlight the need to perform speciation analysis and to introduce appropriate legislation to limit toxic arsenic species content in these food products.
Resumo:
Large scale high yield cadmium sulfide (CdS) nanowires with uniform diameter were synthesized using a rapid and simple solvo-chemical and hydrothermal route assisted by the surfactant cetyltrimethylammonium bromide (CTAB). Unique CdS nanowires of different morphologies could be selectively produced by only varying the concentration of CTAB in the reaction system with cadmium acetate, sulfur powder and ethylenediamine. We obtained CdS nanowires with diameters of 64–65 nm and lengths of up to several micrometers. A comparative study of the optical properties of ferroelectric liquid crystal (FLC) Felix-017/100 doped with 1% of CdS nanowires was performed. Response times of the order of from 160 to 180 μs, rotational viscosities of the order of from 5000 to 3000 mN s m−2 and polarizations of the order of from 10 to 70 nC cm−2 were measured. We also observed an anti-ferroelectric to ferroelectric transition for CdS doped FLC instead of the ferroelectric to paraelectric transition for pure FLC.
Resumo:
A fast, simple and environmentally friendly ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) procedure has been developed to preconcentrate eight cyclic and linear siloxanes from wastewater samples prior to quantification by gas chromatography-mass spectrometry (GC-MS). A two-stage multivariate optimization approach has been developed employing a Plackett-Burman design for screening and selecting the significant factors involved in the USA-DLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were: extractant solvent volume, 13 µL; solvent type, chlorobenzene; sample volume, 13 mL; centrifugation speed, 2300 rpm; centrifugation time, 5 min; and sonication time, 2 min. Under the optimized experimental conditions the method gave levels of repeatability with coefficients of variation between 10 and 24% (n=7). Limits of detection were between 0.002 and 1.4 µg L−1. Calculated calibration curves gave high levels of linearity with correlation coefficient values between 0.991 and 0.9997. Finally, the proposed method was applied for the analysis of wastewater samples. Relative recovery values ranged between 71–116% showing that the matrix had a negligible effect upon extraction. To our knowledge, this is the first time that combines LLME and GC-MS for the analysis of methylsiloxanes in wastewater samples.
Resumo:
In this manuscript, a study of the effect of microwave radiation on the high-performance liquid chromatography separation of tocopherols and vitamin K1 was conducted. The novelty of the application was the use of a relatively low polarity mobile phase in which the dielectric heating effect was minimized to evaluate the nonthermal effect of the microwave radiation over the separation process. Results obtained show that microwave-assisted high-performance liquid chromatography had a shorter analysis time from 31.5 to 13.3 min when the lowest microwave power was used. Moreover, narrower peaks were obtained; hence the separation was more efficient maintaining or even increasing the resolution between the peaks. This result confirms that the increase in mobile phase temperature is not the only variable for improving the separation process but also other nonthermal processes must intervene. Fluorescence detection demonstrated better signal-to-noise compared to photodiode arrayed detection mainly due to the independent effect of microwave pulses on the baseline noise, but photodiode array detection was finally chosen as it allowed a simultaneous detection of nonfluorescent compounds. Finally, a determination of the content of the vitamin E homologs was carried out in different vegetable oils. Results were coherent with those found in the literature.
Resumo:
A novel approach is presented to determine mercury in urine samples, employing vortex-assisted ionic liquid dispersive liquid–liquid microextraction and microvolume back-extraction to prepare samples, and screen-printed electrodes modified with gold nanoparticles for voltammetric analysis. Mercury was extracted directly from non-digested urine samples in a water-immiscible ionic liquid, being back-extracted into an acidic aqueous solution. Subsequently, it was determined using gold nanoparticle-modified screen-printed electrodes. Under optimized microextraction conditions, standard addition calibration was applied to urine samples containing 5, 10 and 15 μg L−1 of mercury. Standard addition calibration curves using standards between 0 and 20 μg L−1 gave a high level of linearity with correlation coefficients ranging from 0.990 to 0.999 (N = 5). The limit of detection was empirical and statistically evaluated, obtaining values that ranged from 0.5 to 1.5 μg L−1, and from 1.1 to 1.3 μg L−1, respectively, which are significantly lower than the threshold level established by the World Health Organization for normal mercury content in urine (i.e., 10–20 μg L−1). A certified reference material (REC-8848/Level II) was analyzed to assess method accuracy finding 87% and 3 μg L−1 as the recovery (trueness) and standard deviation values, respectively. Finally, the method was used to analyze spiked urine samples, obtaining good agreement between spiked and found concentrations (recovery ranged from 97 to 100%).
Resumo:
Analytical transmission electron microscopy indicates that liquid film migration occurs during sintering of an Al-Cu-Mg alloy, that intragranular liquid pools develop from migrating films and that iron segregates to these pools. It is suggested that a high localised iron concentration retards the liquid film migration rate by reducing the coherency strain in the retreating grain, causing a region of the film to detach from the boundary, thus forming an intragranular pool in the advancing grain. Alloys with low iron levels develop few intragranular pools and have high sintered densities. (C) 2003 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A highly sensitive liquid-level sensor based on dual-wavelength single-longitudinal-mode fiber laser is proposed and demonstrated. The laser is formed by exploiting two parallel arranged phase-shift fiber Bragg gratings (ps-FBGs), acting as ultra-narrow bandwidth filters, into a doublering resonators. By beating the dual-wavelength lasing output, a stable microwave signal with frequency stability better than 5 MHz is obtained. The generated beat frequency varies with the change of dual-wavelength spacing. Based on this characteristic, with one ps-FBG serving as the sensing element and the other one acting as the reference element, a highly sensitive liquid level sensor is realized by monitoring the beat frequency shift of the laser. The sensor head is directly bonded to a float which can transfer buoyancy into axial strain on the fiber without introducing other elastic elements. The experimental results show that an ultra-high liquidlevel sensitivity of 2.12 × 107 MHz/m within the measurement range of 1.5 mm is achieved. The sensor presents multiple merits including ultra-high sensitivity, thermal insensitive, good reliability and stability. © 2012 Optical Society of America.
Resumo:
We report the fabrication of a refractive index (RI) sensor based on a liquid core fibre Bragg grating (FBG). A micro-slot FBG was created in standard telecom optical fibre employing the tightly focused femtosecond laser inscription aided chemical etching. A micro-slot with dimensions of 5.74(h) × 125(w) × 1388.72(l) μm was engraved across the whole fibre and along 1mm long FBG which gives advantage of a relatively robust liquid core waveguide. The device performed the refractive index sensitivity up to about 742.72 nm/RIU. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
The detailed characterization of protein N-glycosylation is very demanding given the many different glycoforms and structural isomers that can exist on glycoproteins. Here we report a fast and sensitive method for the extensive structure elucidation of reducing-end labeled N-glycan mixtures using a combination of capillary normal-phase HPLC coupled off-line to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and TOF/TOF-MS/MS. Using this method, isobaric N-glycans released from honey bee phospholipase A2 and Arabidopsis thaliana glycoproteins were separated by normal-phase chromatography and subsequently identified by key fragment ions in the MALDI-TOF/TOF tandem mass spectra. In addition, linkage and branching information were provided by abundant cross-ring and "elimination" fragment ions in the MALDI-CID spectra that gave extensive structural information. Furthermore, the fragmentation characteristics of N-glycans reductively aminated with 2-aminobenzoic acid and 2-aminobenzamide were compared. The identification of N-glycans containing 3-linked core fucose was facilitated by distinctive ions present only in the MALDI-CID spectra of 2-aminobenzoic acid-labeled oligosaccharides. To our knowledge, this is the first MS/MS-based technique that allows confident identification of N-glycans containing 3-linked core fucose, which is a major allergenic determinant on insect and plant glycoproteins.
Resumo:
The solar-assisted heat pump (SAHP) desalination, based on the Rankin cycle, operates in low temperature and utilizes both solar and ambient energy. An experimental SAHP desalination system has been constructed at the National University of Singapore, Singapore. The system consisted of two main sections: an SAHP and a water distillation section. Experiments were carried out under the different meteorological condition of Singapore and results showed that the system had a performance ratio close to 1.3. The heat pump has a coefficient of performance of about 8, with solar collector efficiencies of 80% and 60% for evaporator and liquid collectors, respectively. Economic analysis showed that at a production rate of 900 L/day and an evaporator collector area of around 70m2 will have a payback period of about 3.5 years.
Development of Sample Pretreatment and Liquid Chromatographic Techniques for Antioxidative Compounds
Resumo:
In this study, novel methodologies for the determination of antioxidative compounds in herbs and beverages were developed. Antioxidants are compounds that can reduce, delay or inhibit oxidative events. They are a part of the human defense system and are obtained through the diet. Antioxidants are naturally present in several types of foods, e.g. in fruits, beverages, vegetables and herbs. Antioxidants can also be added to foods during manufacturing to suppress lipid oxidation and formation of free radicals under conditions of cooking or storage and to reduce the concentration of free radicals in vivo after food ingestion. There is growing interest in natural antioxidants, and effective compounds have already been identified from antioxidant classes such as carotenoids, essential oils, flavonoids and phenolic acids. The wide variety of sample matrices and analytes presents quite a challenge for the development of analytical techniques. Growing demands have been placed on sample pretreatment. In this study, three novel extraction techniques, namely supercritical fluid extraction (SFE), pressurised hot water extraction (PHWE) and dynamic sonication-assisted extraction (DSAE) were studied. SFE was used for the extraction of lycopene from tomato skins and PHWE was used in the extraction of phenolic compounds from sage. DSAE was applied to the extraction of phenolic acids from Lamiaceae herbs. In the development of extraction methodologies, the main parameters of the extraction were studied and the recoveries were compared to those achieved by conventional extraction techniques. In addition, the stability of lycopene was also followed under different storage conditions. For the separation of the antioxidative compounds in the extracts, liquid chromatographic methods (LC) were utilised. Two novel LC techniques, namely ultra performance liquid chromatography (UPLC) and comprehensive two-dimensional liquid chromatography (LCxLC) were studied and compared with conventional high performance liquid chromatography (HPLC) for the separation of antioxidants in beverages and Lamiaceae herbs. In LCxLC, the selection of LC mode, column dimensions and flow rates were studied and optimised to obtain efficient separation of the target compounds. In addition, the separation powers of HPLC, UPLC, HPLCxHPLC and HPLCxUPLC were compared. To exploit the benefits of an integrated system, in which sample preparation and final separation are performed in a closed unit, dynamic sonication-assisted extraction was coupled on-line to a liquid chromatograph via a solid-phase trap. The increased sensitivity was utilised in the extraction of phenolic acids from Lamiaceae herbs. The results were compared to those of achieved by the LCxLC system.
Resumo:
One-dimensional (1D) proton NMR spectra of enantiomers are generally undecipherable in chiral orienting poly-gamma-benzyl-L-glutamate (PBLG)/CDCl3 solvent. This arises due to large number of couplings, in addition to superposition of spectra from both the enantiomers, severely hindering the H-1 detection. On the other hand in the present study the benefit is derived front the presence of several couplings among the entire network of interacting protons. Transition selective 1D H-1-H-1 correlation experiment (1D-COSY) which utilizes the Coupling assisted transfer of magnetization not only for unraveling the overlap but also for the selective detection of enantiopure spectrum is reported. The experiment is simple, easy to implement and provides accurate eanantiomeric excess in addition to the determination of the proton-proton couplings of an enantiomer within a short experimental time (few minutes). (C) 2009 Elsevier Inc. All rights reserved.