949 resultados para Lipid Transfer Protein
Body length, dry mass, carbon, nitrogen, lipid, and protein of Euphausia superba, larvae, furcilia I
Resumo:
Scope: Today, about 2–8% of the population of Western countries exhibits some type of food allergy whose impact ranges from localized symptoms confined to the oral mucosa to severe anaphylactic reactions. Consumed worldwide, lettuce is a Compositae family vegetable that can elicit allergic reactions. To date, however, only one lipid transfer protein has been described in allergic reaction to lettuce. The aim of this study was to identify potential new allergens involved in lettuce allergy. Methods and results: Sera from 42 Spanish lettuce-allergic patients were obtained from pa-tients recruited at the outpatient clinic. IgE-binding proteins were detected by SDS-PAGE and immunoblotting. Molecular characterization of IgE-binding bands was performed by MS. Thaumatin was purified using the Agilent 3100 OFFGEL system. The IgE-binding bands recognized in the sera of more than 50% of patients were identified as lipid transfer protein (9 kDa), a thaumatin-like protein (26 kDa), and an aspartyl protease (35 and 45 kDa). ELISA inhibition studies were performed to confirm the IgE reactivity of the purified allergen. Conclusion: Two new major lettuce allergens—a thaumatin-like protein and an aspartyl protease—have been identified and characterized. These allergens may be used to improve both diagnosis and treatment of lettuce-allergic patients.
Resumo:
Yeast phosphatidylinositol transfer protein (Sec14p) function is essential for production of Golgi-derived secretory vesicles, and this requirement is bypassed by mutations in at least seven genes. Analyses of such ‘bypass Sec14p’ mutants suggest that Sec14p acts to maintain an essential Golgi membrane diacylglycerol (DAG) pool that somehow acts to promote Golgi secretory function. SPO14 encodes the sole yeast phosphatidylinositol-4,5-bisphosphate-activated phospholipase D (PLD). PLD function, while essential for meiosis, is dispensable for vegetative growth. Herein, we report specific physiological circumstances under which an unanticipated requirement for PLD activity in yeast vegetative Golgi secretory function is revealed. This PLD involvement is essential in ‘bypass Sec14p’ mutants where normally Sec14p-dependent Golgi secretory reactions are occurring in a Sec14p-independent manner. PLD catalytic activity is necessary but not sufficient for ‘bypass Sec14p’, and yeast operating under ‘bypass Sec14p’ conditions are ethanol-sensitive. These data suggest that PLD supports ‘bypass Sec14p’ by generating a phosphatidic acid pool that is somehow utilized in supporting yeast Golgi secretory function.
Resumo:
Vitamin E (α-tocopherol) is a fat-soluble antioxidant that is transported by plasma lipoproteins in the body. α-Tocopherol taken up by the liver with lipoprotein is thought to be resecreted into the plasma in very low density lipoprotein (VLDL). α-Tocopherol transfer protein (αTTP), which was recently identified as a product of the causative gene for familial isolated vitamin E deficiency, is a cytosolic liver protein and plays an important role in the efficient recycling of plasma vitamin E. To throw light on the mechanism of αTTP-mediated α-tocopherol transfer in the liver cell, we devised an assay system using the hepatoma cell line McARH7777. Using this system, we found that the secretion of α-tocopherol was more efficient in cells expressing αTTP than in matched cells lacking αTTP. Brefeldin A, which effectively inhibits VLDL secretion by disrupting the Golgi apparatus, had no effect on α-tocopherol secretion, indicating that αTTP-mediated α-tocopherol secretion is not coupled to VLDL secretion. Among other agents tested, only 25-hydroxycholesterol, a modulator of cholesterol metabolism, inhibited α-tocopherol secretion. This inhibition is most likely mediated by oxysterol-binding protein. These results suggest that αTTP present in the liver cytosol functions to stimulate secretion of cellular α-tocopherol into the extracellular medium and that the reaction utilizes a novel non-Golgi-mediated pathway that may be linked to cellular cholesterol metabolism and/or transport.
Resumo:
Although the LDL cholesterol-lowering statins have reduced the mortality and morbidity associated with coronary artery disease (CAD), considerable mortality and morbidity remains. Increasing HDL cholesterol levels is associated with reduced CAD mortality and morbidity. In healthy subjects with mild dyslipidemia, treatment with JTT-705 decreased cholesteryl ester transfer protein (CETP) activity, increased HDL cholesterol and decreased LDL cholesterol. Similarly, another CETP inhibitor, torcetrapib, has recently been shown to increase HDL cholesterol by 46%, decrease LDL cholesterol by 8% and have no effect on triglycerides in subjects with HDL cholesterol levels below 1.0 mmol/l. Increasing HDL cholesterol with inhibitors of CETP represents a new approach to dyslipidemia that requires further investigation, especially in patients with CAD.