849 resultados para Lipid Metabolism Disorders
Resumo:
Nowadays, soy is one of the most used ingredients in the formulation of fish feed, due to the ample market supply, lower market price, high protein concentration and favorable amino acid composition. Nevertheless, soybean meal products are rich and primary diet source of phytoestrogens, as genistein, which may have a potential negative impact on growth, hormonal regulation and lipid metabolism in fish. The principal aim of this study was to better understand in vivo and in vitro genistein’s effects on lipid metabolism of rainbow trout. In adipose tissue it was showed an unclear role of genistein on lipid metabolism in rainbow trout, and in liver an anti-obesogenic effect, with an up-regulation of autophagy-related genes LC3b (in adipose tissue) and ATG4b (in liver and adipose tissue), a down-regulation of apoptosis-related genes CASP3 (in adipose tissue) and CASP8 (in liver). An increase of VTG mRNA levels in liver was also observed. Genistein partially exerted these effects via estrogen- receptor dependent mechanism. In white muscle, genistein seemed to promote lipid turnover, up-regulating lipogenic (FAS and LXR) and lipolytic (HSL, PPARα and PPARβ) genes. It seemed that genistein could exert its lipolytic role via autophagic way (up-regulation of ATG4b and ATG12l), not through an apoptotic pathway (down-regulation of CASP3). The effects of genistein on lipid-metabolism and apoptosis-related genes in trout muscle were not dose-dependent, only on autophagy-related genes ATG4B and ATG12l. Moreover, a partial estrogenic activity of this phytoestrogen was also seen. Through in vitro analysis (MTT and ORO assay), instead, it was observed an anti-obesogenic effect of genistein on rainbow trout adipocytes, and this effect was not mediated by ERs. Both in vivo and in vitro, genistein exerted its effects in a dose-dependent manner.
Resumo:
The aquafeed use of raw plant materials, as protein and lipid sources, has been considered and approved as a sustainable alternative to fish products (fish meal and oils) because the current trend to use high-lipid diets has been shown to induce undesirable increase in fat depots or further physiological alterations, such as induction of oxidative stress. In the aquaculture perspective, the addition of natural substances with antioxidant properties is an emerging strategy for protecting biological systems and foodstuffs from oxidative damage. Among natural substances, hydroxytyrosol (HT) and caffeic acid (CA) have attracted considerable attention as food antioxidant additives and modulators of physiological and molecular pathways involved in energy metabolism and adiposity. The aim of this study was to evaluate the effects of CA and HT on lipid metabolism and oxidative stress of rainbow trout (Oncorhynchus mykiss). In vitro results showed the potential anti-obesogenic effects of the compounds CA and HT on the adipose tissue of the rainbow trout. To support these data, in vitro assays performed (MTT, ORO, immunofluorescence) resulted in accordance among them; only results from proliferating cell nuclear antigen (PCNA) assay were not significant. In vivo results showed a possible anti-obesogenic effect of CA in liver and HT in adipose tissue. Regarding oxidative stress, we could hypothesize a possible anti-oxidant role of CA in liver.
Resumo:
Trypanosoma brucei membranes consist of all major eukaryotic glycerophospholipid and sphingolipid classes. These are de novo synthesized from precursors obtained either from the host or from catabolised endocytosed lipids. In recent years, substantial progress has been made in the molecular and biochemical characterisation of several of these lipid biosynthetic pathways, using gene knockout or RNA interference strategies or by enzymatic characterization of individual reactions. Together with the completed genome, these studies have highlighted several possible differences between mammalian and trypanosome lipid biosynthesis that could be exploited for the development of drugs against the diseases caused by these parasites.
Resumo:
There has been limited analysis of the effects of hepatocellular carcinoma (HCC) on liver metabolism and circulating endogenous metabolites. Here, we report the findings of a plasma metabolomic investigation of HCC patients by ultraperformance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS), random forests machine learning algorithm, and multivariate data analysis. Control subjects included healthy individuals as well as patients with liver cirrhosis or acute myeloid leukemia. We found that HCC was associated with increased plasma levels of glycodeoxycholate, deoxycholate 3-sulfate, and bilirubin. Accurate mass measurement also indicated upregulation of biliverdin and the fetal bile acids 7α-hydroxy-3-oxochol-4-en-24-oic acid and 3-oxochol-4,6-dien-24-oic acid in HCC patients. A quantitative lipid profiling of patient plasma was also conducted by ultraperformance liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (UPLC-ESI-TQMS). By this method, we found that HCC was also associated with reduced levels of lysophosphocholines and in 4 of 20 patients with increased levels of lysophosphatidic acid [LPA(16:0)], where it correlated with plasma α-fetoprotein levels. Interestingly, when fatty acids were quantitatively profiled by gas chromatography-mass spectrometry (GC-MS), we found that lignoceric acid (24:0) and nervonic acid (24:1) were virtually absent from HCC plasma. Overall, this investigation illustrates the power of the new discovery technologies represented in the UPLC-ESI-QTOFMS platform combined with the targeted, quantitative platforms of UPLC-ESI-TQMS and GC-MS for conducting metabolomic investigations that can engender new insights into cancer pathobiology.
Resumo:
Background Heterochromatin protein 1 (HP1) family proteins have a well-characterized role in heterochromatin packaging and gene regulation. Their function in organismal development, however, is less well understood. Here we used genome-wide expression profiling to assess novel functions of the Caenorhabditis elegans HP1 homolog HPL-2 at specific developmental stages. Results We show that HPL-2 regulates the expression of germline genes, extracellular matrix components and genes involved in lipid metabolism. Comparison of our expression data with HPL-2 ChIP-on-chip profiles reveals that a significant number of genes up- and down-regulated in the absence of HPL-2 are bound by HPL-2. Germline genes are specifically up-regulated in hpl-2 mutants, consistent with the function of HPL-2 as a repressor of ectopic germ cell fate. In addition, microarray results and phenotypic analysis suggest that HPL-2 regulates the dauer developmental decision, a striking example of phenotypic plasticity in which environmental conditions determine developmental fate. HPL-2 acts in dauer at least partly through modulation of daf-2/IIS and TGF-β signaling pathways, major determinants of the dauer program. hpl-2 mutants also show increased longevity and altered lipid metabolism, hallmarks of the long-lived, stress resistant dauers. Conclusions Our results suggest that the worm HP1 homologue HPL-2 may coordinately regulate dauer diapause, longevity and lipid metabolism, three processes dependent on developmental input and environmental conditions. Our findings are of general interest as a paradigm of how chromatin factors can both stabilize development by buffering environmental variation, and guide the organism through remodeling events that require plasticity of cell fate regulation.
Resumo:
1H-MR spectroscopy (MRS) of intramyocellular lipids (IMCL) became particularly important when it was recognized that IMCL levels are related to insulin sensitivity. While this relation is rather complex and depends on the training status of the subjects, various other influences such as exercise and diet also influence IMCL concentrations. This may open insight into many metabolic interactions; however, it also requires careful planning of studies in order to control all these confounding influences. This review summarizes various historical, methodological, and practical aspects of 1H-MR spectroscopy (MRS) of muscular lipids. That includes a differentiation of bulk magnetic susceptibility effects and residual dipolar coupling that can both be observed in MRS of skeletal muscle, yet affecting different metabolites in a specific way. Fitting of the intra- (IMCL) and extramyocellular (EMCL) signals with complex line shapes and the transformation into absolute concentrations is discussed. Since the determination of IMCL in muscle groups with oblique fiber orientation or in obese subjects is still difficult, potential improvement with high-resolution spectroscopic imaging or at higher field strength is considered. Fat selective imaging is presented as a possible alternative to MRS and the potential of multinuclear MRS is discussed. 1H-MRS of muscle lipids allows non-invasive and repeated studies of muscle metabolism that lead to highly relevant findings in clinics and patho-physiology.
Resumo:
Postprandial metabolism is impaired in patients with type 2 diabetes (T2Dm). Two thiazolidinediones pioglitazone (PGZ) and rosiglitazone (RGZ) have similar effects on glycaemic control but differ in their effects on fasting lipids. This study investigated the effects of RGZ and PGZ on postprandial metabolism in a prospective, randomized crossover trial.
Resumo:
Adult-onset growth hormone (GH) deficiency (GHD) is associated with insulin resistance and decreased exercise capacity. Intramyocellular lipids (IMCL) depend on training status, diet, and insulin sensitivity. Using magnetic resonance spectroscopy, we studied IMCL content following physical activity (IMCL-depleted) and high-fat diet (IMCL-repleted) in 15 patients with GHD before and after 4 mo of GH replacement therapy (GHRT) and in 11 healthy control subjects. Measurements of insulin resistance and exercise capacity were performed and skeletal muscle biopsies were carried out to assess expression of mRNA of key enzymes involved in skeletal muscle lipid metabolism by real-time PCR and ultrastructure by electron microscopy. Compared with control subjects, patients with GHD showed significantly higher difference between IMCL-depleted and IMCL-repleted. GHRT resulted in an increase in skeletal muscle mRNA expression of IGF-I, hormone-sensitive lipase, and a tendency for an increase in fatty acid binding protein-3. Electron microscopy examination did not reveal significant differences after GHRT. In conclusion, variation of IMCL may be increased in patients with GHD compared with healthy control subjects. Qualitative changes within the skeletal muscle (i.e., an increase in free fatty acids availability from systemic and/or local sources) may contribute to the increase in insulin resistance and possibly to the improvement of exercise capacity after GHRT. The upregulation of IGF-I mRNA suggests a paracrine/autocrine role of IGF-I on skeletal muscle.
Resumo:
Insufficient feed intake during early lactation results in elevated body fat mobilization to meet energy demands for milk production. Hepatic energy metabolism is involved by increasing endogenous glucose production and hepatic glucose output for milk synthesis and by adaptation of postcalving fuel oxidation. Given that cows differ in their degree of fat mobilization around parturition, indicated by variable total liver fat concentration (LFC), the study investigated the influence of peripartum fat mobilization on hepatic gene expression involved in gluconeogenesis, fatty acid oxidation, ketogenesis, and cholesterol synthesis, as well as transcriptional factors referring to energy metabolism. German Holstein cows were grouped according to mean total LFC on d 1, 14, and 28 after parturition as low [<200mg of total fat/g of dry matter (DM); n=10], medium (200-300 mg of total fat/g of DM; n=10), and high (>300 mg of total fat/g of DM; n=7), indicating fat mobilization during early lactation. Cows were fed total mixed rations ad libitum and held under equal conditions. Liver biopsies were taken at d 56 and 15 before and d 1, 14, 28, and 49 after parturition to measure mRNA abundances of pyruvate carboxylase (PC); phosphoenolpyruvate carboxykinase; glucose-6-phosphatase; propionyl-coenzyme A (CoA) carboxylase α; carnitine palmitoyl-transferase 1A (CPT1A); acyl-CoA synthetase, long chain 1 (ASCL1); acyl-CoA dehydrogenase, very long chain; 3-hydroxy-3-methylglutaryl-CoA synthase 1 and 2; sterol regulatory element-binding factor 1; and peroxisome proliferator-activated factor α. Total LFC postpartum differed greatly among cows, and the mRNA abundance of most enzymes and transcription factors changed with time during the experimental period. Abundance of PC mRNA increased at parturition to a greater extent in high- and medium-LFC groups than in the low-LFC group. Significant LFC × time interactions for ACSL1 and CPT1A during the experimental period indicated variable gene expression depending on LFC after parturition. Correlations between hepatic gene expression and performance data and plasma concentrations of metabolites and hormones showed time-specific relations during the transition period. Elevated body fat mobilization during early lactation affected gene expression involved in gluconeogenesis to a greater extent than gene expression involved in lipid metabolism, indicating the dependence of hepatic glucose metabolism on hepatic lipid status and fat mobilization during early lactation.
Resumo:
We postulated that neuromuscular disuse results in deleteriously affected tissue-vascular fluid exchange processes and subsequently damages the important oxidative bioenergetic process of intramuscular lipid metabolism. The in-depth research reported in the literature is somewhat limited by the ex vivo nature and sporadic time-course characterization of disuse atrophy and recovery. Thus, an in vivo controlled, localized animal model of disuse atrophy was developed in one of the hindlimbs of laboratory rabbits (employing surgically implanted tetrodotoxin (TTX)-filled mini-osmotic pump-sciatic nerve superfusion system) and tested repeatedly with magnetic resonance (MR) throughout the 2-week period of temporarily induced disuse and during the recovery period (following explantation of the TTX-filled pump) for a period of 3 weeks. Controls consisted of saline/"sham"-implanted rabbit hindlimbs. The validity of this model was established with repeated electrophysiologic nerve conduction testing using a clinically appropriate protocol and percutaneously inserted small needle stimulating and recording electrodes. Evoked responses recorded from proximal (P) and distal (D) sites to the sciatic nerve cuff in the TTX-implanted group revealed significantly decreased (p $<$ 0.001) proximal-to-distal (P/D) amplitude ratios (as much as 50-70% below Baseline/pre-implanted and sham-implanted group values) and significantly increased (p $<$ 0.01) differential latency (PL-DL) values (as much as 1.5 times the pre- and sham-implanted groups). By Day 21 of recovery, observed P/D and PL-DL levels matched Baseline/sham-implemented levels. MRI-determined cross-sectional area (CSA) values of Baseline/pre-implanted, sham- or TTX-implanted, and recovering/explanted and the corresponding contralateral hindlimb tibialis anterior (TA) muscles normalized to tibial bone (TB) CSA (in TA/TB ratios) revealed that there was a significant decline (indicative of atrophic response) from pre- and sham-implanted controls by as much as 20% (p $<$ 0.01) at Day 7 and 50-55% (p $<$ 0.001) at Day 13 of TTX-implantation. In the non-implanted contralaterals, a significant increase (indicative of hypertrophic response) by as much as 10% (p $<$ 0.025) at Day 7 and 27% (p $<$ 0.001) at Day 13 + TTX was found. The induced atrophic/hypertrophic TA muscles were observed to be fully recovered by Day 21 post-explantation as evidenced by image TA/TB ratios. End-point biopsy results from a small group of rabbits revealed comprehensive atrophy of both Type I and Type II fibers, although the heterogeneity of the response supports the use of image-guided, volume-localized proton magnetic resonance spectroscopy (MRS) to noninvasively assess tissue-level metabolic changes. MRS-determined results of a 0.25cc volume of tissue within implanted limb TA muscles under resting/pre-ischemic, ischemic-stressed, and post-ischemic conditions at timepoints during and following disuse atrophy/recovery revealed significantly increased intramuscular spectral lipid levels, as much as 2-3 times (p $<$ 0.01) the Baseline/pre-implanted values at Day 7 and 6-7 times (p $<$ 0.001) at Day 13 + TTX, which approached normal levels (compared to pre- and sham-implanted groups) by Day 21 of post-explanation recovery. (Abstract shortened by UMI.) ^
Resumo:
To ascertain whether reactive oxygen species (ROS) contribute to training-induced adaptation of skeletal muscle, we administered ROS-scavenging antioxidants (AOX; 140 mg/l of ascorbic acid, 12 mg/l of coenzyme Q10 and 1% N-acetyl-cysteine) via drinking water to 16 C57BL/6 mice. Sixteen other mice received unadulterated tap water (CON). One cohort of both groups (CON(EXE) and AOX(EXE) ) was subjected to treadmill exercise for 4 weeks (16-26 m/min, incline of 5°-10°). The other two cohorts (CON(SED) and AOX(SED) ) remained sedentary. In skeletal muscles of the AOX(EXE) mice, GSSG and the expression levels of SOD-1 and PRDX-6 were significantly lower than those in the CON(EXE) mice after training, suggesting disturbance of ROS levels. The peak power related to the body weight and citrate synthase activity was not significantly influenced in mice receiving AOX. Supplementation with AOX significantly altered the mRNA levels of the exercise-sensitive genes HK-II, GLUT-4 and SREBF-1c and the regulator gene PGC-1alpha but not G6PDH, glycogenin, FABP-3, MCAD and CD36 in skeletal muscle. Although the administration of AOX during endurance exercise alters the expression of particular genes of the ROS metabolism, it does not influence peak power or generally shift the metabolism, but it modulates the expression of specific genes of the carbohydrate and lipid metabolism and PGC-1alpha within murine skeletal muscle.
Resumo:
Neonatal energy metabolism in calves has to adapt to extrauterine life and depends on colostrum feeding. The adrenergic and glucocorticoid systems are involved in postnatal maturation of pathways related to energy metabolism and calves show elevated plasma concentrations of cortisol and catecholamines during perinatal life. We tested the hypothesis that hepatic glucocorticoid receptors (GR) and α₁- and β₂-adrenergic receptors (AR) in neonatal calves are involved in adaptation of postnatal energy metabolism and that respective binding capacities depend on colostrum feeding. Calves were fed colostrum (CF; n=7) or a milk-based formula (FF; n=7) with similar nutrient content up to d 4 of life. Blood samples were taken daily before feeding and 2h after feeding on d 4 of life to measure metabolites and hormones related to energy metabolism in blood plasma. Liver tissue was obtained 2 h after feeding on d 4 to measure hepatic fat content and binding capacity of AR and GR. Maximal binding capacity and binding affinity were calculated by saturation binding assays using [(3)H]-prazosin and [(3)H]-CGP-12177 for determination of α₁- and β₂-AR and [(3)H]-dexamethasone for determination of GR in liver. Additional liver samples were taken to measure mRNA abundance of AR and GR, and of key enzymes related to hepatic glucose and lipid metabolism. Plasma concentrations of albumin, triacylglycerides, insulin-like growth factor I, leptin, and thyroid hormones changed until d 4 and all these variables except leptin and thyroid hormones responded to feed intake on d 4. Diet effects were determined for albumin, insulin-like growth factor I, leptin, and thyroid hormones. Binding capacity for GR was greater and for α₁-AR tended to be greater in CF than in FF calves. Binding affinities were in the same range for each receptor type. Gene expression of α₁-AR (ADRA1) tended to be lower in CF than FF calves. Binding capacity of GR was related to parameters of glucose and lipid metabolism, whereas β₂-AR binding capacity was negatively associated with glucose metabolism. In conclusion, our results indicate a dependence of GR and α₁-AR on milk feeding immediately after birth and point to an involvement of hepatic GR and AR in postnatal adaptation of glucose and lipid metabolism in calves.
Resumo:
The mechanism for higher susceptibility of diabetes patients to TB is unknown. Chronic hyperglycemia has been shown to be associated with altered immunity to Mycobacterium tuberculosis, and may explain the higher risk of TB among diabetes patients. However, it is possible that other conditions that frequently occur in these patients are also contributing to TB susceptibility. Our goal was to determine whether lipid metabolism, liver function and/or chronic inflammation are altered in tuberculosis (TB) patients with diabetes (DM), compared to non-DM.^ Confirmed TB patients who were 20 years or older (n=159) were selected from a database in the south Texas and northeast Mexico area. Differences between serum values for liver function, lipid metabolism and/or chronic inflammation were compared between TB patients with DM to non-DM.^ We found that CRP was the most frequent alteration, with about 80% having high values suggestive of chronic inflammation. The other frequent abnormalities were high triglycerides in about 40% of the patients and low HDL cholesterol in about 60% of the patients. Otherwise, less than 10% of the TB patients had an abnormal finding for any of the other laboratory tests. The abnormalities were not more frequent among the patients with either DM (versus non-DM) or high HbA1c (versus normal).^ A possible explanation for the high levels or CRP may be that everyone in the study had TB, which in itself causes inflammation and may have masked the increased CRP levels that characterize diabetes patients. There was a mild alteration in lipid metabolism in patients with DM, which is unlikely to explain altered immunity to TB. Otherwise, liver function tests were normal in patients with DM. Therefore the processing of anti-TB medications should be no different between the TB patients with and without diabetes. Our findings, however, do not rule out that other study populations have more remarkable metabolic alterations associated with diabetes. Therefore, it would be interesting to conduct a similar study in patients from different ethnic groups (White, African American, or Native American) in order to see if the same pattern is observed.^