971 resultados para Linked Data
Resumo:
In this position paper, we claim that the need for time consuming data preparation and result interpretation tasks in knowledge discovery, as well as for costly expert consultation and consensus building activities required for ontology building can be reduced through exploiting the interplay of data mining and ontology engineering. The aim is to obtain in a semi-automatic way new knowledge from distributed data sources that can be used for inference and reasoning, as well as to guide the extraction of further knowledge from these data sources. The proposed approach is based on the creation of a novel knowledge discovery method relying on the combination, through an iterative ?feedbackloop?, of (a) data mining techniques to make emerge implicit models from data and (b) pattern-based ontology engineering to capture these models in reusable, conceptual and inferable artefacts.
Resumo:
Current methods and tools that support Linked Data publication have mainly focused so far on static data, without considering the growing amount of streaming data available on the Web. In this paper we describe a case study that involves the publication of static and streaming Linked Data for bike sharing systems and related entities. We describe some of the challenges that we have faced, the solutions that we have explored, the lessons that we have learned, and the opportunities that lie in the future for exploiting Linked Stream Data.
Resumo:
The creation of language resources is a time-consuming process requiring the efforts of many people. The use of resources collaboratively created by non-linguists can potentially ameliorate this situation. However, such resources often contain more errors compared to resources created by experts. For the particular case of lexica, we analyse the case of Wiktionary, a resource created along wiki principles and argue that through the use of a principled lexicon model, namely lemon, the resulting data could be better understandable to machines. We then present a platform called lemon source that supports the creation of linked lexical data along the lemon model. This tool builds on the concept of a semantic wiki to enable collaborative editing of the resources by many users concurrently. In this paper, we describe the model, the tool and present an evaluation of its usability based on a small group of users.
Resumo:
In this paper we present a revisited classification of term variation in the light of the Linked Data initiative. Linked Data refers to a set of best practices for publishing and connecting structured data on the Web with the idea of transforming it into a global graph. One of the crucial steps of this initiative is the linking step, in which datasets in one or more languages need to be linked or connected with one another. We claim that the linking process would be facilitated if datasets are enriched with lexical and terminological information. Being that the final aim, we propose a classification of lexical, terminological and semantic variants that will become part of a model of linguistic descriptions that is currently being proposed within the framework of the W3C Ontology-Lexica Community Group to enrich ontologies and Linked Data vocabularies. Examples of modeling solutions of the different types of variants are also provided.
Resumo:
Linked Data is not always published with a license. Sometimes a wrong license type is used, like a license for software, or it is not expressed in a standard, machine readable manner. Yet, Linked Data resources may be subject to intellectual property and database laws, may contain personal data subject to privacy restrictions or may even contain important trade secrets. The proper declaration of which rights are held, waived or licensed is a must for the lawful use of Linked Data at its different granularity levels, from the simple RDF statement to a dataset or a mapping. After comparing the current practice with the actual needs, six research questions are posed.
Resumo:
La Web de Linked Data supone un nuevo paradigma que pretende explotar la Web como un espacio global de información. La aplicación de los principios de esta nueva Web a la información geoespacial superará la integración de información tradicional, logrando una articulación semántica de los datos que haga desaparecer los silos de datos presentes en las actuales Infraestructuras de Datos Espaciales. Ante esta propuesta, en este artículo se describe el trabajo desarrollado en el marco de un caso de uso utilizando una parte de los datos del SIGNA. En este caso de uso se ha llevado a cabo un proceso de generación y publicación de los mencionados datos conforme a los principios de Linked Data y estos se combinan con diversos servicios de la IDEE y CartoCiudad para explotar el componente geoespacial.
Resumo:
The use of semantic and Linked Data technologies for Enterprise Application Integration (EAI) is increasing in recent years. Linked Data and Semantic Web technologies such as the Resource Description Framework (RDF) data model provide several key advantages over the current de-facto Web Service and XML based integration approaches. The flexibility provided by representing the data in a more versatile RDF model using ontologies enables avoiding complex schema transformations and makes data more accessible using Web standards, preventing the formation of data silos. These three benefits represent an edge for Linked Data-based EAI. However, work still has to be performed so that these technologies can cope with the particularities of the EAI scenarios in different terms, such as data control, ownership, consistency, or accuracy. The first part of the paper provides an introduction to Enterprise Application Integration using Linked Data and the requirements imposed by EAI to Linked Data technologies focusing on one of the problems that arise in this scenario, the coreference problem, and presents a coreference service that supports the use of Linked Data in EAI systems. The proposed solution introduces the use of a context that aggregates a set of related identities and mappings from the identities to different resources that reside in distinct applications and provide different views or aspects of the same entity. A detailed architecture of the Coreference Service is presented explaining how it can be used to manage the contexts, identities, resources, and applications which they relate to. The paper shows how the proposed service can be utilized in an EAI scenario using an example involving a dashboard that integrates data from different systems and the proposed workflow for registering and resolving identities. As most enterprise applications are driven by business processes and involve legacy data, the proposed approach can be easily incorporated into enterprise applications.
Resumo:
Purpose – Linked data is gaining great interest in the cultural heritage domain as a new way for publishing, sharing and consuming data. The paper aims to provide a detailed method and MARiMbA a tool for publishing linked data out of library catalogues in the MARC 21 format, along with their application to the catalogue of the National Library of Spain in the datos.bne.es project. Design/methodology/approach – First, the background of the case study is introduced. Second, the method and process of its application are described. Third, each of the activities and tasks are defined and a discussion of their application to the case study is provided. Findings – The paper shows that the FRBR model can be applied to MARC 21 records following linked data best practices, librarians can successfully participate in the process of linked data generation following a systematic method, and data sources quality can be improved as a result of the process. Originality/value – The paper proposes a detailed method for publishing and linking linked data from MARC 21 records, provides practical examples, and discusses the main issues found in the application to a real case. Also, it proposes the integration of a data curation activity and the participation of librarians in the linked data generation process.
Resumo:
In this paper we present a revisited classification of term variation in the light of the Linked Data initiative. Linked Data refers to a set of best practices for publishing and connecting structured data on the Web with the idea of transforming it into a global graph. One of the crucial steps of this initiative is the linking step, in which datasets in one or more languages need to be linked or connected with one another. We claim that the linking process would be facilitated if datasets are enriched with lexical and terminological information. Being that the final aim, we propose a classification of lexical, terminological and semantic variants that will become part of a model of linguistic descriptions that is currently being proposed within the framework of the W3C Ontology- Lexica Community Group to enrich ontologies and Linked Data vocabularies. Examples of modeling solutions of the different types of variants are also provided.
Resumo:
In this article, we argue that there is a growing number of linked datasets in different natural languages, and that there is a need for guidelines and mechanisms to ensure the quality and organic growth of this emerging multilingual data network. However, we have little knowledge regarding the actual state of this data network, its current practices, and the open challenges that it poses. Questions regarding the distribution of natural languages, the links that are established across data in different languages, or how linguistic features are represented, remain mostly unanswered. Addressing these and other language-related issues can help to identify existing problems, propose new mechanisms and guidelines or adapt the ones in use for publishing linked data including language-related features, and, ultimately, provide metrics to evaluate quality aspects. In this article we review, discuss, and extend current guidelines for publishing linked data by focusing on those methods, techniques and tools that can help RDF publishers to cope with language barriers. Whenever possible, we will illustrate and discuss each of these guidelines, methods, and tools on the basis of practical examples that we have encountered in the publication of the datos.bne.es dataset.
Resumo:
In this paper we describe the specification of amodel for the semantically interoperable representation of language resources for sentiment analysis. The model integrates "lemon", an RDF-based model for the specification of ontology-lexica (Buitelaar et al. 2009), which is used increasinglyfor the representation of language resources asLinked Data, with Marl, an RDF-based model for the representation of sentiment annotations (West-erski et al., 2011; Sánchez-Rada et al., 2013)
Resumo:
Rights expression languages declare the permitted and prohibited actions to be performed on a resource. Along this work, six rights expression languages are compared, abstracting their commonalities and outlining their underlying pattern. Linked Data, which can be object of protection by the intellectual property laws or its access be restricted by an access control system, can be the asset in rights expressions. The requirements for a pattern for licensing Linked Data resources are listed.
Resumo:
Sentiment analysis has recently gained popularity in the financial domain thanks to its capability to predict the stock market based on the wisdom of the crowds. Nevertheless, current sentiment indicators are still silos that cannot be combined to get better insight about the mood of different communities. In this article we propose a Linked Data approach for modelling sentiment and emotions about financial entities. We aim at integrating sentiment information from different communities or providers, and complements existing initiatives such as FIBO. The ap- proach has been validated in the semantic annotation of tweets of several stocks in the Spanish stock market, including its sentiment information.