989 resultados para Linear topological spaces.
Resumo:
We prove that a continuous linear operator T on a topological vector space X with weak topology is mixing if and only if the dual operator T' has no finite dimensional invariant subspaces. This result implies the characterization of hypercyclic operators on the space $\omega$ due to Herzog and Lemmert and implies the result of Bayart and Matheron, who proved that for any hypercyclic operator T on $\omega$, $T\oplus T$ is also hypercyclic.
Resumo:
Spin factors and generalizations are used to revisit positive generation of B(E, F), where E and F are ordered Banach spaces. Interior points of B(E, F)+ are discussed and in many cases it is seen that positive generation of B(E, F) is controlled by spin structure in F when F is a JBW-algebra.
Resumo:
Date of Acceptance: 5/04/2015 15 pages, 4 figures
Resumo:
It is shown that the construct of supertopological spaces and continuous maps is topological.
Resumo:
We completely determine the spectra of composition operators induced by linear fractional self-maps of the unit disc acting on weighted Dirichlet spaces; extending earlier results by Higdon [8] and answering the open questions in this context.
Resumo:
We say that a (countably dimensional) topological vector space X is orbital if there is T∈L(X) and a vector x∈X such that X is the linear span of the orbit {Tnx:n=0,1,…}. We say that X is strongly orbital if, additionally, x can be chosen to be a hypercyclic vector for T. Of course, X can be orbital only if the algebraic dimension of X is finite or infinite countable. We characterize orbital and strongly orbital metrizable locally convex spaces. We also show that every countably dimensional metrizable locally convex space X does not have the invariant subset property. That is, there is T∈L(X) such that every non-zero x∈X is a hypercyclic vector for T. Finally, assuming the Continuum Hypothesis, we construct a complete strongly orbital locally convex space.
As a byproduct of our constructions, we determine the number of isomorphism classes in the set of dense countably dimensional subspaces of any given separable infinite dimensional Fréchet space X. For instance, in X=ℓ2×ω, there are exactly 3 pairwise non-isomorphic (as topological vector spaces) dense countably dimensional subspaces.
Resumo:
Analogues of the smooth tubular neighborhood theorem are developed for the topological and piecewise linear categories.
Resumo:
The aim of this paper is to provide a comprehensive study of some linear non-local diffusion problems in metric measure spaces. These include, for example, open subsets in ℝN, graphs, manifolds, multi-structures and some fractal sets. For this, we study regularity, compactness, positivity and the spectrum of the stationary non-local operator. We then study the solutions of linear evolution non-local diffusion problems, with emphasis on similarities and differences with the standard heat equation in smooth domains. In particular, we prove weak and strong maximum principles and describe the asymptotic behaviour using spectral methods.
Resumo:
In this study, a discussion of the fluid dynamics in the attic space is reported, focusing on its transient response to sudden and linear changes of temperature along the two inclined walls. The transient behaviour of an attic space is relevant to our daily life. The instantaneous and non-instantaneous (ramp) heating boundary condition is applied on the sloping walls of the attic space. A theoretical understanding of the transient behaviour of the flow in the enclosure is performed through scaling analysis. A proper identification of the timescales, the velocity and the thickness relevant to the flow that develops inside the cavity makes it possible to predict theoretically the basic flow features that will survive once the thermal flow in the enclosure reaches a steady state. A time scale for the heating-up of the whole cavity together with the heat transfer scales through the inclined walls has also been obtained through scaling analysis. All scales are verified by the numerical simulations.
Resumo:
In this paper we describe a body of work aimed at extending the reach of mobile navigation and mapping. We describe how running topological and metric mapping and pose estimation processes concurrently, using vision and laser ranging, has produced a full six-degree-of-freedom outdoor navigation system. It is capable of producing intricate three-dimensional maps over many kilometers and in real time. We consider issues concerning the intrinsic quality of the built maps and describe our progress towards adding semantic labels to maps via scene de-construction and labeling. We show how our choices of representation, inference methods and use of both topological and metric techniques naturally allow us to fuse maps built from multiple sessions with no need for manual frame alignment or data association.
Resumo:
This thesis presents an empirical study of the effects of topology on cellular automata rule spaces. The classical definition of a cellular automaton is restricted to that of a regular lattice, often with periodic boundary conditions. This definition is extended to allow for arbitrary topologies. The dynamics of cellular automata within the triangular tessellation were analysed when transformed to 2-manifolds of topological genus 0, genus 1 and genus 2. Cellular automata dynamics were analysed from a statistical mechanics perspective. The sample sizes required to obtain accurate entropy calculations were determined by an entropy error analysis which observed the error in the computed entropy against increasing sample sizes. Each cellular automata rule space was sampled repeatedly and the selected cellular automata were simulated over many thousands of trials for each topology. This resulted in an entropy distribution for each rule space. The computed entropy distributions are indicative of the cellular automata dynamical class distribution. Through the comparison of these dynamical class distributions using the E-statistic, it was identified that such topological changes cause these distributions to alter. This is a significant result which implies that both global structure and local dynamics play a important role in defining long term behaviour of cellular automata.
Resumo:
Approaches to art-practice-as-research tend to draw a distinction between the processes of creative practice and scholarly reflection. According to this template, the two sites of activity – studio/desk, work/writing, body/mind – form the ‘correlative’ entity known as research. Creative research is said to be produced by the navigation of world and thought: spaces that exist in a continual state of tension with one another. Either we have the studio tethered to brute reality while the desk floats free as a site for the fluid cross-pollination of texts and concepts. Or alternatively, the studio is characterized by the amorphous, intuitive play of forms and ideas, while the desk represents its cartography, mapping and fixing its various fluidities. In either case, the research status of art practice is figured as a fundamentally riven space. However, the nascent philosophy of Speculative Realism proposes a different ontology – one in which the space of human activity comprises its own reality, independent of human perception. The challenge it poses to traditional metaphysics is to rethink the world as if it were a real space. When applied to practice-led research, this reconceptualization challenges the creative researcher to consider creative research as a contiguous space – a topology where thinking and making are not dichotomous points but inflections in an amorphous and dynamic field. Instead of being subject to the vertical tension between earth and air, a topology of practice emphasizes its encapsulated, undulating reality – an agentive ‘object’ formed according to properties of connectedness, movement and differentiation. Taking the central ideas of Quentin Meillassoux and Graham Harman as a point of departure, this paper will provide a speculative account of the interplay of spatialities that characterise the author’s studio practice. In so doing, the paper will model the innovative methodological potential produced by the analysis of topological dimensions of the studio and the way they can be said to move beyond the ‘geo-critical’ divide.
Resumo:
This paper aims to address the ways in which drawing can be understood as the becoming-expressive of materials, site, and body, over time. The discussion pivots around a series of studies that replace linear or causal relationships – in history, drawing and expression – with topological movement. My approach is largely through a speculative case study. In a rereading of the familiar Butades myth, I examine how a shadow tracing can variously be taken as the first mimetic art with its origins in the urge to “capture”, and, antithetically, as the originary expressive folding of matter, site and body. The paper is divided into five sections. The first presents the Butades myth, identifying the representational problem that lies at the roots of its traditional telling. The next three sections outline a series of topologies that facilitate a discussion of the Butades myth from historical, disciplinary, and expressive perspectives. The final section aims to show the relevance of this discussion to a contemporary drawing practice, using my own drawing research as a case study. The field of inquiry is that of representational critique. The fold, an image associated with a topological geometry, replaces the relational or signifying disjuncture of representational structures, and suggests a becoming- expressive of subject and object, form and matter.