972 resultados para Linear elastic
Resumo:
Linear Elastic Fracture Mechanics (LEFM) has been widely used in the past for fatigue crack growth studies, but this is acceptable only in situations which are within small scale yielding (SSY). In many practical structural components, conditions of SSY could be violated and one has to look for fracture criteria based on elasto-plastic analysis. Crack closure phenomenon, one of the most striking discoveries based on inelastic deformations during crack growth, has significant effect on fatigue crack growth rate. Numerical simulation of this phenomenon is computationally intensive and involved but has been successfully implemented. Stress intensity factors and strain energy release rates lose their meaning, J-integral (or its incremental) values are applicable only in specific situations, whereas alternate path independent integrals have been proposed in the literature for use with elasto-plastic fracture mechanics (EPFM) based criteria. This paper presents certain salient features of two independent finite element (numerical) studies of relevance to fatigue crack growth, where elasto-plastic analysis becomes significant. These problems can only be handled in the current day computational environment, and would have been only a dream just a few years ago.
Resumo:
Real-time simulation of deformable solids is essential for some applications such as biological organ simulations for surgical simulators. In this work, deformable solids are approximated to be linear elastic, and an easy and straight forward numerical technique, the Finite Point Method (FPM), is used to model three dimensional linear elastostatics. Graphics Processing Unit (GPU) is used to accelerate computations. Results show that the Finite Point Method, together with GPU, can compute three dimensional linear elastostatic responses of solids at rates suitable for real-time graphics, for solids represented by reasonable number of points.
Resumo:
Hardened concrete is a three-phase composite consisting of cement paste, aggregate and interface between cement paste and aggregate. The interface in concrete plays a key role on the overall performance of concrete. The interface properties such as deformation, strength, fracture energy, stress intensity and its influence on stiffness and ductility of concrete have been investigated. The effect of composition of cement, surface characteristics of aggregate and type of loading have been studied. The load-deflection response is linear showing that the linear elastic fracture mechanics (LEFM) is applicable to characterize interface. The crack deformation increases with large rough aggregate surfaces. The strength of interface increases with the richness of concrete mix. The interface fracture energy increases as the roughness of the aggregate surface increases. The interface energy under mode II loading increases with the orientation of aggregate surface with the direction of loading. The chemical reaction between smooth aggregate surface and the cement paste seems to improve the interface energy. The ductility of concrete decreases as the surface area of the strong interface increases. The fracture toughness (stress intensity factor) of the interface seems to be very low, compared with hardened cement paste, mortar and concrete.
Resumo:
The topology optimization problem for the synthesis of compliant mechanisms has been formulated in many different ways in the last 15 years, but there is not yet a definitive formulation that is universally accepted. Furthermore, there are two unresolved issues in this problem. In this paper, we present a comparative study of five distinctly different formulations that are reported in the literature. Three benchmark examples are solved with these formulations using the same input and output specifications and the same numerical optimization algorithm. A total of 35 different synthesis examples are implemented. The examples are limited to desired instantaneous output direction for prescribed input force direction. Hence, this study is limited to linear elastic modeling with small deformations. Two design parameterizations, namely, the frame element based ground structure and the density approach using continuum elements, are used. The obtained designs are evaluated with all other objective functions and are compared with each other. The checkerboard patterns, point flexures, the ability to converge from an unbiased uniform initial guess, and the computation time are analyzed. Some observations are noted based on the extensive implementation done in this study. Complete details of the benchmark problems and the results are included. The computer codes related to this study are made available on the internet for ready access.
Resumo:
Real-time simulation of deformable solids is essential for some applications such as biological organ simulations for surgical simulators. In this work, deformable solids are approximated to be linear elastic, and an easy and straight forward numerical technique, the Finite Point Method (FPM), is used to model three dimensional linear elastostatics. Graphics Processing Unit (GPU) is used to accelerate computations. Results show that the Finite Point Method, together with GPU, can compute three dimensional linear elastostatic responses of solids at rates suitable for real-time graphics, for solids represented by reasonable number of points.
Resumo:
Bonding a fibre reinforced polymer (FRP) composite or metallic plate to the soffit of a reinforced concrete (RC), timber or metallic beam can significantly increase its strength and other aspects of structural performance. These hybrid beams are often found to fail due to premature debonding of the plate from the original beam in a brittle manner. This has led to the development of many analytical solutions over the last two decades to quantify the interfacial shear and normal stresses between the adherends. The adherends are subjected to axial, bending and shear deformations. However, most analytical solutions have neglected the influence of shear deformation of the adherends. For the few solutions which consider this effect in an approximate manner, their applicability is limited to one or two specific load cases. This paper presents a general analytical solution for the interfacial stresses in plated beams under an arbitrary loading with the shear deformation of the adherends duly considered. The shear stress distribution is assumed to be parabolic through the depth of the adherends in predicting the interfacial shear stress and Timoshenko's beam theory is adopted in predicting interfacial normal stress to account for the shear deformation. The solution is applicable to a beam of arbitrary prismatic cross-section bonded symmetrically or asymmetrically with a thin or thick plate, both having linear elastic material properties. The effect of shear deformation is illustrated through an example beam. The influence of material and geometric parameters of the adherends and adhesive on the interfacial stress concentrations at the plate end is discussed. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The eigenvalues and eigenfunctions corresponding to the three-dimensional equations for the linear elastic equilibrium of a clamped plate of thickness 2ϵ, are shown to converge (in a specific sense) to the eigenvalues and eigenfunctions of the well-known two-dimensional biharmonic operator of plate theory, as ϵ approaches zero. In the process, it is found in particular that the displacements and stresses are indeed of the specific forms usually assumed a priori in the literature. It is also shown that the limit eigenvalues and eigenfunctions can be equivalently characterized as the leading terms in an asymptotic expansion of the three-dimensional solutions, in terms of powers of ϵ. The method presented here applies equally well to the stationary problem of linear plate theory, as shown elsewhere by P. Destuynder.
Resumo:
Pin loaded lug joints fitted with different types of pins are analysed in the presence of cracks at pin-plate interface. An algorithm for finite element contact stress analysis of joints developed earlier to deal with varying partial contact/separation at the pin-plate interface using a marching solution is used in the present analysis. Stress Intensity Factors (SIF) at the crack tips are evaluated using Modified Crack Closure Integral (MCCI) method within the realm of Linear Elastic Fracture Mechanics (LEFM) assumptions. A comparison of fatigue crack growth lives between interference and push fit pin joints is carried out using these SIF's. Results from a finite element analysis on a push fit pin joint are used to fit experimental fatigue crack growth data.
Resumo:
This paper presents methodologies for residual strength evaluation of concrete structural components using linear elastic and nonlinear fracture mechanics principles. The effect of cohesive forces due to aggregate bridging has been represented mathematically by employing tension softening models. Various tension softening models such as linear, bilinear, trilinear, exponential and power curve have been described with appropriate expressions. These models have been validated by predicting the remaining life of concrete structural components and comparing with the corresponding experimental values available in the literature. It is observed that the predicted remaining life by using power model and modified bi-linear model is in good agreement with the corresponding experimental values. Residual strength has also been predicted using these tension softening models and observed that the predicted residual strength is in good agreement with the corresponding analytical values in the literature. In general, it is observed that the variation of predicted residual moment with the chosen tension softening model follows the similar trend as in the case of remaining life. Linear model predicts large residual moments followed by trilinear, bilinear and power models.
Resumo:
Wave propagation in graphene sheet embedded in elastic medium (polymer matrix) has been a topic of great interest in nanomechanics of graphene sheets, where the equivalent continuum models are widely used. In this manuscript, we examined this issue by incorporating the nonlocal theory into the classical plate model. The influence of the nonlocal scale effects has been investigated in detail. The results are qualitatively different from those obtained based on the local/classical plate theory and thus, are important for the development of monolayer graphene-based nanodevices. In the present work, the graphene sheet is modeled as an isotropic plate of one-atom thick. The chemical bonds are assumed to be formed between the graphene sheet and the elastic medium. The polymer matrix is described by a Pasternak foundation model, which accounts for both normal pressure and the transverse shear deformation of the surrounding elastic medium. When the shear effects are neglected, the model reduces to Winkler foundation model. The normal pressure or Winkler elastic foundation parameter is approximated as a series of closely spaced, mutually independent, vertical linear elastic springs where the foundation modulus is assumed equivalent to stiffness of the springs. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of flexural wave propagation model is also derived and the results of the wave dispersion analysis are shown for both local and nonlocal elasticity calculations. From this analysis we show that the elastic matrix highly affects the flexural wave mode and it rapidly increases the frequency band gap of flexural mode. The flexural wavenumbers obtained from nonlocal elasticity calculations are higher than the local elasticity calculations. The corresponding wave group speeds are smaller in nonlocal calculation as compared to local elasticity calculation. The effect of y-directional wavenumber (eta(q)) on the spectrum and dispersion relations of the graphene embedded in polymer matrix is also observed. We also show that the cut-off frequencies of flexural wave mode depends not only on the y-direction wavenumber but also on nonlocal scaling parameter (e(0)a). The effect of eta(q) and e(0)a on the cut-off frequency variation is also captured for the cases of with and without elastic matrix effect. For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(0)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this article. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Given the increasing cost of designing and building new highway pavements, reliability analysis has become vital to ensure that a given pavement performs as expected in the field. Recognizing the importance of failure analysis to safety, reliability, performance, and economy, back analysis has been employed in various engineering applications to evaluate the inherent uncertainties of the design and analysis. The probabilistic back analysis method formulated on Bayes' theorem and solved using the Markov chain Monte Carlo simulation method with a Metropolis-Hastings algorithm has proved to be highly efficient to address this issue. It is also quite flexible and is applicable to any type of prior information. In this paper, this method has been used to back-analyze the parameters that influence the pavement life and to consider the uncertainty of the mechanistic-empirical pavement design model. The load-induced pavement structural responses (e.g., stresses, strains, and deflections) used to predict the pavement life are estimated using the response surface methodology model developed based on the results of linear elastic analysis. The failure criteria adopted for the analysis were based on the factor of safety (FOS), and the study was carried out for different sample sizes and jumping distributions to estimate the most robust posterior statistics. From the posterior statistics of the case considered, it was observed that after approximately 150 million standard axle load repetitions, the mean values of the pavement properties decrease as expected, with a significant decrease in the values of the elastic moduli of the expected layers. An analysis of the posterior statistics indicated that the parameters that contribute significantly to the pavement failure were the moduli of the base and surface layer, which is consistent with the findings from other studies. After the back analysis, the base modulus parameters show a significant decrease of 15.8% and the surface layer modulus a decrease of 3.12% in the mean value. The usefulness of the back analysis methodology is further highlighted by estimating the design parameters for specified values of the factor of safety. The analysis revealed that for the pavement section considered, a reliability of 89% and 94% can be achieved by adopting FOS values of 1.5 and 2, respectively. The methodology proposed can therefore be effectively used to identify the parameters that are critical to pavement failure in the design of pavements for specified levels of reliability. DOI: 10.1061/(ASCE)TE.1943-5436.0000455. (C) 2013 American Society of Civil Engineers.
Resumo:
This paper presents the advanced analytical methodologies such as Double- G and Double - K models for fracture analysis of concrete specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete. Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Double-G model is based on energy concept and couples the Griffith's brittle fracture theory with the bridging softening property of concrete. The double-K fracture model is based on stress intensity factor approach. Various fracture parameters such as cohesive fracture toughness (4), unstable fracture toughness (K-Ic(c)), unstable fracture toughness (K-Ic(un)) and initiation fracture toughness (K-Ic(ini)) have been evaluated based on linear elastic fracture mechanics and nonlinear fracture mechanics principles. Double-G and double-K method uses the secant compliance at the peak point of measured P-CMOD curves for determining the effective crack length. Bi-linear tension softening model has been employed to account for cohesive stresses ahead of the crack tip. From the studies, it is observed that the fracture parameters obtained by using double - G and double - K models are in good agreement with each other. Crack extension resistance has been estimated by using the fracture parameters obtained through double - K model. It is observed that the values of the crack extension resistance at the critical unstable point are almost equal to the values of the unstable fracture toughness K-Ic(un) of the materials. The computed fracture parameters will be useful for crack growth study, remaining life and residual strength evaluation of concrete structural components.
Resumo:
The design methodology for flexible pavements needs to address the mechanisms of pavement failure, loading intensities and also develop suitable approaches for evaluation of pavement performance. In the recent years, the use of geocells to improve pavement performance has been receiving considerable attention. This paper studies the influence of geocells on the required thickness of pavements by placing it below the granular layers (base and sub-base) and above the subgrade. The reduction in thickness here refers to the reduction in the thickness of the GSB (Granular Sub-base) layer, with a possibility of altogether getting rid of it. To facilitate the analysis, a simple linear elastic approach is used, considering six of the sections as given in the Indian Roads Congress (IRC) code. All the analysis was done using the pavement analysis package KENPAVE. The results show that the use of geocells enables a reduction in pavement thickness.
Resumo:
A 2D multi-particle model is carried out to understand the effect of microstructural variations and loading conditions on the stress evolution in Al-Si alloy under compression. A total of six parameters are varied to create 26 idealized microstructures: particle size, shape, orientation, matrix temper, strain rate, and temperature. The effect of these parameters is investigated to understand the fracture of Si particles and the yielding of Al matrix. The Si particles are modeled as a linear elastic solid and the Al matrix is modeled as an elasto-plastic solid. The results of the study demonstrate that the increase in particle size decreases the yield strength of the alloy. The particles with high aspect ratio and oriented at 0A degrees and 90A degrees to the loading axis show higher stress values. This implies that the particle shape and orientation are dominant factors in controlling particle fracture. The heat treatment of the alloy is found to increase the stress levels of both particles and matrix. Stress calculations also show that higher particle fracture and matrix yielding is expected at higher strain rate deformation. Particle fracture decreases with increase in temperature and the Al matrix plays an important role in controlling the properties of the alloy at higher temperatures. Further, this strain rate and temperature dependence is more pronounced in the heat-treated microstructure. These predictions are consistent with the experimentally observed Si particle fracture in real microstructure.
Resumo:
The linear stability analysis of a plane Couette flow of an Oldroyd-B viscoelastic fluid past a flexible solid medium is carried out to investigate the role of polymer addition in the stability behavior. The system consists of a viscoelastic fluid layer of thickness R, density rho, viscosity eta, relaxation time lambda, and retardation time beta lambda flowing past a linear elastic solid medium of thickness HR, density rho, and shear modulus G. The emphasis is on the high-Reynolds-number wall-mode instability, which has recently been shown in experiments to destabilize the laminar flow of Newtonian fluids in soft-walled tubes and channels at a significantly lower Reynolds number than that for flows in rigid conduits. For Newtonian fluids, the linear stability studies have shown that the wall modes become unstable when flow Reynolds number exceeds a certain critical value Re c which scales as Sigma(3/4), where Reynolds number Re = rho VR/eta, V is the top-plate velocity, and dimensionless parameter Sigma = rho GR(2)/eta(2) characterizes the fluid-solid system. For high-Reynolds-number flow, the addition of polymer tends to decrease the critical Reynolds number in comparison to that for the Newtonian fluid, indicating a destabilizing role for fluid viscoelasticity. Numerical calculations show that the critical Reynolds number could be decreased by up to a factor of 10 by the addition of small amount of polymer. The critical Reynolds number follows the same scaling Re-c similar to Sigma(3/4) as the wall modes for a Newtonian fluid for very high Reynolds number. However, for moderate Reynolds number, there exists a narrow region in beta-H parametric space, corresponding to very dilute polymer solution (0.9 less than or similar to beta < 1) and thin solids (H less than or similar to 1.1), in which the addition of polymer tends to increase the critical Reynolds number in comparison to the Newtonian fluid. Thus, Reynolds number and polymer properties can be tailored to either increase or decrease the critical Reynolds number for unstable modes, thus providing an additional degree of control over the laminar-turbulent transition.