874 resultados para Limits of Stability
Resumo:
[EN] Progress in methodology in specific fields is usually very closely linked to the technological progress in other areas of knowledge. This justifies the fact that lexicographical techniques have had to wait for the arrival of the IT era of the last decades of the 20th century in order to be able to create specialised electronic dictionaries which can house and systemise enormous amounts of information which can later be dealt with quickly and efficiently. This study proposes a practical-methodological model which aims to solve the grammatical treatment of adverbs in Ancient Latin. We have suggested a list of 5 types, in a decreasing order from a greater to lesser degree of specialisation; technical (T), semi-technical (S-T), instrumental-valued (I-V), instrumental- descriptive (I-D), instrumental-expository (I-E).
Resumo:
Eguíluz, Federico; Merino, Raquel; Olsen, Vickie; Pajares, Eterio; Santamaría, José Miguel (eds.)
Resumo:
While some of the deepest results in nature are those that give explicit bounds between important physical quantities, some of the most intriguing and celebrated of such bounds come from fields where there is still a great deal of disagreement and confusion regarding even the most fundamental aspects of the theories. For example, in quantum mechanics, there is still no complete consensus as to whether the limitations associated with Heisenberg's Uncertainty Principle derive from an inherent randomness in physics, or rather from limitations in the measurement process itself, resulting from phenomena like back action. Likewise, the second law of thermodynamics makes a statement regarding the increase in entropy of closed systems, yet the theory itself has neither a universally-accepted definition of equilibrium, nor an adequate explanation of how a system with underlying microscopically Hamiltonian dynamics (reversible) settles into a fixed distribution.
Motivated by these physical theories, and perhaps their inconsistencies, in this thesis we use dynamical systems theory to investigate how the very simplest of systems, even with no physical constraints, are characterized by bounds that give limits to the ability to make measurements on them. Using an existing interpretation, we start by examining how dissipative systems can be viewed as high-dimensional lossless systems, and how taking this view necessarily implies the existence of a noise process that results from the uncertainty in the initial system state. This fluctuation-dissipation result plays a central role in a measurement model that we examine, in particular describing how noise is inevitably injected into a system during a measurement, noise that can be viewed as originating either from the randomness of the many degrees of freedom of the measurement device, or of the environment. This noise constitutes one component of measurement back action, and ultimately imposes limits on measurement uncertainty. Depending on the assumptions we make about active devices, and their limitations, this back action can be offset to varying degrees via control. It turns out that using active devices to reduce measurement back action leads to estimation problems that have non-zero uncertainty lower bounds, the most interesting of which arise when the observed system is lossless. One such lower bound, a main contribution of this work, can be viewed as a classical version of a Heisenberg uncertainty relation between the system's position and momentum. We finally also revisit the murky question of how macroscopic dissipation appears from lossless dynamics, and propose alternative approaches for framing the question using existing systematic methods of model reduction.
Resumo:
When flow returns to a temporary stream a certain number of plant and animal species establish themselves more or less rapidly on the stream-bed constituting the initial phase of evolution of the re-population. This phase is essentially characterised by the ”awakening” of animal species that passed the dry season in a dormant state and by the development of the first unicellular algae that constitute the periphyton. Then they are succeeded by more or less stable animal groups and the structural complexity increases. The authors of the present study aim to analyse the dynamics of community succession from the return of water to the biotope until its drying up. It is attempted to determine the influence of the duration of flow on this evolution. This work is based on the analysis of population diversity with reference to its two complementary aspects, species richness and equitability. The River Destel which was studied for this project is situated in the Gorge of Ollioules near the town of Toulon.
Resumo:
Anthropogenic climate and land-use change are leading to irreversible losses of global biodiversity, upon which ecosystem functioning depends. Since total species' well-being depends on ecosystem goods and services, man must determine how much net primary productivity (NPP) may be appropriated and carbon emitted so as to not adversely impact this and future generations. In 2005, man ought to have only appropriated 9.72 Pg C of NPP, representing a factor 2.50, or 59.93%, reduction in human-appropriated NPP in that year. Concurrently, the carbon cycle would have been balanced with a factor 1.26, or 20.84%, reduction from 7.60 Gt C/year to 5.70 Gt C/year, representing a return to the 1986 levels. This limit is in keeping with the category III stabilization scenario of the Intergovernmental Panel for Climate Change. Projecting population growth to 2030 and its associated basic food requirements, the maximum HANPP remains at 9.74 ± 0.02 Pg C/year. This time-invariant HANPP may only provide for the current global population of 6.51 billion equitably at the current average consumption of 1.49 t C per capita, calling into question the sustainability of developing countries striving for high-consuming country levels of 5.85 t C per capita and its impacts on equitable resource distribution. © Springer Science+Business Media B.V. 2009.
Resumo:
The flexoelectric conversion of mechanical to electrical energy in nematic liquid crystals is investigated using continuum theory. Since the electrical energy produced cannot exceed the mechanical energy supplied, and vice-versa, upper bounds are imposed on the magnitudes of the flexoelectric coefficients in terms of the elastic and dielectric coefficients. For conventional values of the elastic and dielectric coefficients, it is shown that the flexoelectric coefficients may not be larger than a few tens of pC/m. This has important consequences for the future use of such flexoelectric materials in devices and the related energetics of distorted equilibrium structures. © 2011 Author(s).