980 resultados para Limestone aquifer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to study the colonization and development of moss mites (Oribatida) communities in a Scots pine forest of a reclaimed limestone mine dump in Northern Poland, 3 plots from the dump were chosen. The selected plots differed in age, 5 years old, 35 and 50 years old. From a total of 30 samples 499 mites (Acari) were extracted in Tullgren funnel from which 262 were Oribatida. Abundance (N) was analyzed in all mites and after determining the species of both, juvenile and adult stages of oribatids, the following indices were analyzed: Abundance (N), Dominance (D), Species diversity (S), Species richness (s) and Shannon’s diversity index (H). Regarding to the results obtained; oribatid mites were dominant with the highest abundance in all assemblages (Plot 1: 139 Oribatida /299 Acari. Plot 2: 40/55 and Plot 3: 83/145). Tectocepheus velatus showed a very high dominance (45,99%) in plot 1; the highest value for Shannon’s diversity index belonged to plot 3. On the other hand, juvenile’s percentage was significantly higher than adult’s percentage, especially at plot 2 (95,02%). These results made us to conclude that the high abundance of oribatids in the youngest forest is due to T. velatus’s high abundance and that plot 3 is the best habitat for mites. Finally, the high occurrence of juvenile stages requires keeping on studying the area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A composite stock of alkaline gabbro and syenite is intrusive into limestone of the Del Carmen, Sue Peake and Santa Elena Formations at the northwest end of the Christmas Mountains. There is abundant evidence of solution of wallrock by magma but nowhere are gabbro and limestone in direct contact. The sequence of lithologies developed across the intrusive contact and across xenoliths is gabbro, pyroxenite, calc-silicate skarn, marble. Pyroxenite is made up of euhedral crystals of titanaugite and sphene in a leucocratic matrix of nepheline, Wollastonite and alkali feldspar. The uneven modal distribution of phases in pyroxenite and the occurrence' of nepheline syenite dikes, intrusive into pyroxenite and skarn, suggest that pyroxenite represents an accumulation of clinopyroxene "cemented" together by late-solidifying residual magma of nepheline syenite composition. Assimilation of limestone by gabbroic magma involves reactions between calcite and magma and/or crystals in equilibrium with magma and crystallization of phases in which the magma is saturated, to supply energy for the solution reaction. Gabbroic magma was saturated with plagioclase and clinopyroxene at the time of emplacement. The textural and mineralogic features of pyroxenite can be produced by the reaction 2( 1-X) CALCITE + ANXABl-X = (1-X) NEPHELINE+ 2(1-X) WOLLASTONITE+ X ANORTHITE+ 2(1-X) CO2. Plagioclase in pyroxenite has corroded margins and is rimmed by nepheline, suggestive of resorption by magma. Anorthite and wollastonite enter solid solution in titanaugite. For each mole of calcite dissolved, approximately one mole of clinopyroxene was crystallized. Thus the amount of limestone that may be assimilated is limited by the concentration of potential clinopyroxene in the magma. Wollastonite appears as a phase when magma has been depleted in iron and magnesium by crystallization of titanaugite. The predominance of mafic and ultramafic compositions among contaminated rocks and their restriction to a narrow zone along the intrusive contact provides little evidence for the generation of a significant volume of desilicated magma as a result of limestone assimilation.

Within 60 m of the intrusive contact with the gabbro, nodular chert in the Santa Elena Limestone reacted with the enveloping marble to form spherical nodules of high-temperature calc-silicate minerals. The phases wollastonite, rankinite, spurrite, tilleyite and calcite, form a series of sharply-bounded, concentric monomineralic and two-phase shells which record a step-wise decrease in silica content from the core of a nodule to its rim. Mineral zones in the nodules vary 'with distance from the gabbro as follows:

0-5 m CALCITE + SPURRITE + RANKINITE + WOLLASTONITE
5-16 m CALCITE + TILLEYITE ± SPURRITE + RANKINITE + WOLLASTONITE
16-31 m CALCITE + TILLEYITE + WOLLASTONITE
31-60 m CALCITE + WOLLASTONITE
60-plus CALCITE + QUARTZ

The mineral of a one-phase zone is compatible with the phases bounding it on either side but these phases are incompatible in the same volume of P-T-XCO2.

Growth of a monomineralio zone is initiated by reaction between minerals of adjacent one-phase zones which become unstable with rising temperature to form a thin layer of a new single phase that separates the reactants and is compatible with both of them. Because the mineral of the new zone is in equilibrium with the phases at both of its contacts, gradients in the chemical potentials of the exchangeable components are established across it. Although zone boundaries mark discontinuities in the gradients of bulk composition, two-phase equilibria at the contacts demonstrate that the chemical potentials are continuous. Hence, Ca, Si and CO2 were redistributed in the growing nodule by diffusion. A monomineralic zone grows at the expense of an adjacent zone by reaction between diffusing components and the mineral of the adjacent zone. Equilibria between two phases at zone boundaries buffers the chemical potentials of the diffusing species. Thus, within a monomineralic zone, the chemical potentials of the diffusing components are controlled external to the local assemblage by the two-phase equilibria at the zone boundaries.

Mineralogically zoned calc-silicate skarn occurs as a narrow band that separates pyroxenite and marble along the intrusive contact and forms a rim on marble xenoliths in gabbro. Skarn consists of melilite or idocrase pseudomorphs of melili te, one or two . stoichiometric calcsilicate phases and accessory Ti-Zr garnet, perovskite and magnetite. The sequence of mineral zones from pyroxenite to marble, defined by a characteristic calc-silicate, is wollastonite, rankinite, spurrite, calcite. Mineral assemblages of adjacent skarn zones are compatible and the set of zones in a skarn band defines a facies type, indicating that the different mineral assemblages represent different bulk compositions recrystallized under identical conditions. The number of phases in each zone is less than the number that might be expected to result from metamorphism of a general bulk composition under conditions of equilibrium, trivariant in P, T and uCO2. The "special" bulk composition of each zone is controlled by reaction between phases of the zones bounding it on either side. The continuity of the gradients of composition of melilite and garnet solid solutions across the skarn is consistent with the local equilibrium hypothesis and verifies that diffusion was the mechanism of mass transport. The formula proportions of Ti and Zr in garnet from skarn vary antithetically with that of Si Which systematically decreases from pyroxenite to marble. The chemical potential of Si in each skarn zone was controlled by the coexisting stoichiometric calc-silicate phases in the assemblage. Thus the formula proportion of Si in garnet is a direct measure of the chemical potential of Si from point to point in skarn. Reaction between gabbroic magma saturated with plagioclase and clinopyroxene produced nepheline pyroxenite and melilite-wollastonite skarn. The calcsilicate zones result from reaction between calcite and wollastonite to form spurrite and rankinite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few detailed studies have been made on the ecology of the chalk streams. A complex community of plants and animals is present and much more information is required to achieve an understanding of the requirements and interactions of all the species. It is important that the rivers affected by this scheme should be studied and kept under continued observation so that any effects produced by the scheme can be detected. The report gives a brief synopsis of work carried out during the second year of a four year ecological study sponsored jointly by the Thames Water Authority and the Central Water Planning Unit. It assumes some familiarity with the investigations carried out on the River Lambourn during the preceding three years which was sponsored jointly by the Thames Conservancy and Water Resources Board (immediate predecessors of the present sponsoring organisations). (PDF contains 31 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few detailed studies have been made on the ecology of the chalk streams. A complex community of plants and animals is present and much more information is required to achieve an understanding of the requirements and interactions of all the species. It is important that the rivers affected by this scheme should be studied and kept under continued observation so that any effects produced by the scheme can be detected. The report gives a brief synopsis of work carried out during the third year of a four year ecological study sponsored jointly by the Thames Water Authority and the Central Water Planning Unit. It assumes . It assumes some familiarity with the investigations carried out on the River Lambourn during the preceding three years which was sponsored jointly by the Thames Conservancy and Water Resources Board (immediate predecessors of the present sponsoring organisations). (PDF contains 35 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquifer denitrification is among the most poorly constrained fluxes in global and regional nitrogen budgets. The few direct measurements of denitrification in groundwaters provide limited information about its spatial and temporal variability, particularly at the scale of whole aquifers. Uncertainty in estimates of denitrification may also lead to underestimates of its effect on isotopic signatures of inorganic N, and thereby confound the inference of N source from these data. In this study, our objectives are to quantify the magnitude and variability of denitrification in the Upper Floridan Aquifer (UFA) and evaluate its effect on N isotopic signatures at the regional scale. Using dual noble gas tracers (Ne, Ar) to generate physical predictions of N2 gas concentrations for 112 observations from 61 UFA springs, we show that excess (i.e. denitrification-derived) N2 is highly variable in space and inversely correlated with dissolved oxygen (O2). Negative relationships between O2 and δ15N NO3 across a larger dataset of 113 springs, well-constrained isotopic fractionation coefficients, and strong 15N:18O covariation further support inferences of denitrification in this uniquely organic-matter-poor system. Despite relatively low average rates, denitrification accounted for 32 % of estimated aquifer N inputs across all sampled UFA springs. Back-calculations of source δ15N NO3 based on denitrification progression suggest that isotopically-enriched nitrate (NO3-) in many springs of the UFA reflects groundwater denitrification rather than urban- or animal-derived inputs. © Author(s) 2012.