986 resultados para Likelihood function
Resumo:
In this paper, we discuss inferential aspects for the Grubbs model when the unknown quantity x (latent response) follows a skew-normal distribution, extending early results given in Arellano-Valle et al. (J Multivar Anal 96:265-281, 2005b). Maximum likelihood parameter estimates are computed via the EM-algorithm. Wald and likelihood ratio type statistics are used for hypothesis testing and we explain the apparent failure of the Wald statistics in detecting skewness via the profile likelihood function. The results and methods developed in this paper are illustrated with a numerical example.
Resumo:
Mixed linear models are commonly used in repeated measures studies. They account for the dependence amongst observations obtained from the same experimental unit. Often, the number of observations is small, and it is thus important to use inference strategies that incorporate small sample corrections. In this paper, we develop modified versions of the likelihood ratio test for fixed effects inference in mixed linear models. In particular, we derive a Bartlett correction to such a test, and also to a test obtained from a modified profile likelihood function. Our results generalize those in [Zucker, D.M., Lieberman, O., Manor, O., 2000. Improved small sample inference in the mixed linear model: Bartlett correction and adjusted likelihood. Journal of the Royal Statistical Society B, 62,827-838] by allowing the parameter of interest to be vector-valued. Additionally, our Bartlett corrections allow for random effects nonlinear covariance matrix structure. We report simulation results which show that the proposed tests display superior finite sample behavior relative to the standard likelihood ratio test. An application is also presented and discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In many statistical inference problems, there is interest in estimation of only some elements of the parameter vector that defines the adopted model. In general, such elements are associated to measures of location and the additional terms, known as nuisance parameters, to control the dispersion and asymmetry of the underlying distributions. To estimate all the parameters of the model and to draw inferences only on the parameters of interest. Depending on the adopted model, this procedure can be both algebraically is common and computationally very costly and thus it is convenient to reduce it, so that it depends only on the parameters of interest. This article reviews estimation methods in the presence of nuisance parameters and consider some applications in models recently discussed in the literature.
Resumo:
This paper presents a two-step pseudo likelihood estimation technique for generalized linear mixed models with the random effects being correlated between groups. The core idea is to deal with the intractable integrals in the likelihood function by multivariate Taylor's approximation. The accuracy of the estimation technique is assessed in a Monte-Carlo study. An application of it with a binary response variable is presented using a real data set on credit defaults from two Swedish banks. Thanks to the use of two-step estimation technique, the proposed algorithm outperforms conventional pseudo likelihood algorithms in terms of computational time.
Resumo:
Data available on continuos-time diffusions are always sampled discretely in time. In most cases, the likelihood function of the observations is not directly computable. This survey covers a sample of the statistical methods that have been developed to solve this problem. We concentrate on some recent contributions to the literature based on three di§erent approaches to the problem: an improvement of the Euler-Maruyama discretization scheme, the use of Martingale Estimating Functions and the application of Generalized Method of Moments (GMM).
Resumo:
Data available on continuous-time diffusions are always sampled discretely in time. In most cases, the likelihood function of the observations is not directly computable. This survey covers a sample of the statistical methods that have been developed to solve this problem. We concentrate on some recent contributions to the literature based on three di§erent approaches to the problem: an improvement of the Euler-Maruyama discretization scheme, the employment of Martingale Estimating Functions, and the application of Generalized Method of Moments (GMM).
Resumo:
Objetivou-se avaliar a melhor modelagem para as variâncias genética aditiva, de ambiente permanente e residual da produção de leite no dia do controle (PLDC) de caprinos. Utilizaram-se modelos de regressão aleatória sobre polinômios ortogonais de Legendre com diferentes ordens de ajuste e variância residual heterogênea. Consideraram-se como efeitos fixos os efeitos de grupo de contemporâneos, a idade da cabra ao parto (co-variável) e a regressão fixa da PLDC sobre polinômios de Legendre, para modelar a trajetória média da população; e, como efeitos aleatórios, os efeitos genético aditivo e de ambiente permanente. O modelo com quatro classes de variâncias residuais foi o que proporcionou melhor ajuste. Os valores do logaritmo da função de verossimilhança, de AIC e BIC apontaram para seleção de modelos com ordens mais altas (cinco para o efeito genético e sete para o efeito de ambiente permanente). Entretanto, os autovalores associados às matrizes de co-variâncias entre os coeficientes de regressão indicaram a possibilidade de redução da dimensionalidade. As altas ordens de ajuste proporcionaram estimativas de variâncias genéticas e correlações genéticas e de ambiente permanente que não condizem com o fenômeno biológico estudado. O modelo de quinta ordem para a variância genética aditiva e de sétima ordem para o ambiente permanente foi indicado. Entretanto, um modelo mais parcimonioso, de quarta ordem para o efeito genético aditivo e de sexta ordem para o efeito de ambiente permanente, foi suficiente para ajustar as variâncias nos dados.
Resumo:
Programas de melhoramento são atividades que se desenvolvem durante anos e, por isso, devem ser flexíveis ao ajuste às novas situações criadas por mudanças nas tendências de mercado, na situação econômica e aquelas causadas por aumento do volume e qualidade dos dados e, também, por novas técnicas propostas pela comunidade científica. O ajuste a essas últimas deve ser feito, principalmente, por meio da substituição e escolha do modelo mais adequado para a descrição do fenômeno, em um determinado cenário. Os dados de ganho de peso médio diário, de um programa de melhoramento de suínos, envolvendo as raças Duroc, Landrace e Large White, foram analisados por meio da teoria bayesiana, por meio de dois modelos candidatos. Foram simulados três níveis de informação à priori: informativa, pouco informativa e não informativa. O comportamento das curvas das distribuições à posteriori e as respectivas estimativas associadas a cada nível de informação à priori foram analisadas e comparadas. Os resultados indicam que no modelo mais simples, as amostras das três raças são suficientes para produzir estimativas que não são alteradas pela informação à priori. Com relação ao mais parametrizado, as estimativas, para a raça Duroc, são alteradas pelo conhecimento prévio e, nesse caso, deve se buscar a melhor representação possível da distribuição à priori para obtenção de estimativas que são mais adequadas, dado o estado de conhecimento atual do melhorista.
Resumo:
Dados de 4.959 lactações de 2.414 vacas da raça Pardo-Suíça, filhas de 70 reprodutores, distribuídos em 51 rebanhos, foram utilizados para se estimar o componente de variância para a interação reprodutor x rebanho das produções de leite e de gordura e verificar o efeito desta interação sobre a avaliação genética dos reprodutores, por meio de modelos que diferiam na presença e ausência do termo de interação. As produções de leite e de gordura foram ajustadas para duas ordenhas diárias, 305 dias de lactação e idade adulta da vaca. O teste da razão de verossimilhança foi utilizado na verificação da efetividade da inclusão da interação no modelo. As médias das produções de leite e de gordura foram 6085,79 ± 1629,73 kg e 225,61 ± 60,44 kg, respectivamente. A proporção da variância total decorrente da interação reprodutor x rebanho foi 0,4%, para a produção de leite, e 1%, para a produção de gordura. A estimativa de herdabilidade foi 0,38, para a produção de leite, utilizando-se ambos os modelos, e reduziu de 0,40 para 0,39, para a produção de gordura, quando o modelo com interação foi considerado. A função de verossimilhança aumentou significativamente com a inclusão da interação no modelo. A correlação de Spearman foi próxima de um para ambas as características, quando todos os reprodutores foram considerados. Houve redução de 1% na estimativa de acurácia dos valores genéticos preditos para ambas as características, porém, a correlação de Pearson estimada entre as acurácias obtidas para cada modelo estudado foi próxima à unidade. A interaçãoreprodutor x rebanho não afetou as estimativas de componentes de variâncias genética e residual e a ordem de classificação dos reprodutores para ambas as características.
Resumo:
We introduce a new method to improve Markov maps by means of a Bayesian approach. The method starts from an initial map model, wherefrom a likelihood function is defined which is regulated by a temperature-like parameter. Then, the new constraints are added by the use of Bayes rule in the prior distribution. We applied the method to the logistic map of population growth of a single species. We show that the population size is limited for all ranges of parameters, allowing thus to overcome difficulties in interpretation of the concept of carrying capacity known as the Levins paradox. © Published under licence by IOP Publishing Ltd.
Resumo:
We introduce a new kind of likelihood function based on the sequence of moments of the data distribution. Both binned and unbinned data samples are discussed, and the multivariate case is also derived. Building on this approach we lay out the formalism of shape analysis for signal searches. In addition to moment-based likelihoods, standard likelihoods and approximate statistical tests are provided. Enough material is included to make the paper self-contained from the perspective of shape analysis. We argue that the moment-based likelihoods can advantageously replace unbinned standard likelihoods for the search of nonlocal signals, by avoiding the step of fitting Monte Carlo generated distributions. This benefit increases with the number of variables simultaneously analyzed. The moment-based signal search is exemplified and tested in various 1D toy models mimicking typical high-energy signal-background configurations. Moment-based techniques should be particularly appropriate for the searches for effective operators at the LHC.
Resumo:
Many efforts have been devoting since last years to reduce uncertainty in hydrological modeling predictions. The principal sources of uncertainty are provided by input errors, for inaccurate rainfall prediction, and model errors, given by the approximation with which the water flow processes in the soil and river discharges are described. The aim of the present work is to develop a bayesian model in order to reduce the uncertainty in the discharge predictions for the Reno river. The ’a priori’ distribution function is given by an autoregressive model, while the likelihood function is provided by a linear equation which relates observed values of discharge in the past and hydrological TOPKAPI model predictions obtained by the rainfall predictions of the limited-area model COSMO-LAMI. The ’a posteriori’ estimations are provided throw a H∞ filter, because the statistical properties of estimation errors are not known. In this work a stationary and a dual adaptive filter are implemented and compared. Statistical analysis of estimation errors and the description of three case studies of flood events occurred during the fall seasons from 2003 to 2005 are reported. Results have also revealed that errors can be described as a markovian process only at a first approximation. For the same period, an ensemble of ’a posteriori’ estimations is obtained throw the COSMO-LEPS rainfall predictions, but the spread of this ’a posteriori’ ensemble is not enable to encompass observation variability. This fact is related to the building of the meteorological ensemble, whose spread reaches its maximum after 5 days. In the future the use of a new ensemble, COSMO–SREPS, focused on the first 3 days, could be helpful to enlarge the meteorogical and, consequently, the hydrological variability.
Resumo:
In the first chapter, we consider the joint estimation of objective and risk-neutral parameters for SV option pricing models. We propose a strategy which exploits the information contained in large heterogeneous panels of options, and we apply it to S&P 500 index and index call options data. Our approach breaks the stochastic singularity between contemporaneous option prices by assuming that every observation is affected by measurement error. We evaluate the likelihood function by using a MC-IS strategy combined with a Particle Filter algorithm. The second chapter examines the impact of different categories of traders on market transactions. We estimate a model which takes into account traders’ identities at the transaction level, and we find that the stock prices follow the direction of institutional trading. These results are carried out with data from an anonymous market. To explain our estimates, we examine the informativeness of a wide set of market variables and we find that most of them are unambiguously significant to infer the identity of traders. The third chapter investigates the relationship between the categories of market traders and three definitions of financial durations. We consider trade, price and volume durations, and we adopt a Log-ACD model where we include information on traders at the transaction level. As to trade durations, we observe an increase of the trading frequency when informed traders and the liquidity provider intensify their presence in the market. For price and volume durations, we find the same effect to depend on the state of the market activity. The fourth chapter proposes a strategy to express order aggressiveness in quantitative terms. We consider a simultaneous equation model to examine price and volume aggressiveness at Euronext Paris, and we analyse the impact of a wide set of order book variables on the price-quantity decision.
Resumo:
Background The estimation of demographic parameters from genetic data often requires the computation of likelihoods. However, the likelihood function is computationally intractable for many realistic evolutionary models, and the use of Bayesian inference has therefore been limited to very simple models. The situation changed recently with the advent of Approximate Bayesian Computation (ABC) algorithms allowing one to obtain parameter posterior distributions based on simulations not requiring likelihood computations. Results Here we present ABCtoolbox, a series of open source programs to perform Approximate Bayesian Computations (ABC). It implements various ABC algorithms including rejection sampling, MCMC without likelihood, a Particle-based sampler and ABC-GLM. ABCtoolbox is bundled with, but not limited to, a program that allows parameter inference in a population genetics context and the simultaneous use of different types of markers with different ploidy levels. In addition, ABCtoolbox can also interact with most simulation and summary statistics computation programs. The usability of the ABCtoolbox is demonstrated by inferring the evolutionary history of two evolutionary lineages of Microtus arvalis. Using nuclear microsatellites and mitochondrial sequence data in the same estimation procedure enabled us to infer sex-specific population sizes and migration rates and to find that males show smaller population sizes but much higher levels of migration than females. Conclusion ABCtoolbox allows a user to perform all the necessary steps of a full ABC analysis, from parameter sampling from prior distributions, data simulations, computation of summary statistics, estimation of posterior distributions, model choice, validation of the estimation procedure, and visualization of the results.
Resumo:
In this paper, we focus on the model for two types of tumors. Tumor development can be described by four types of death rates and four tumor transition rates. We present a general semi-parametric model to estimate the tumor transition rates based on data from survival/sacrifice experiments. In the model, we make a proportional assumption of tumor transition rates on a common parametric function but no assumption of the death rates from any states. We derived the likelihood function of the data observed in such an experiment, and an EM algorithm that simplified estimating procedures. This article extends work on semi-parametric models for one type of tumor (see Portier and Dinse and Dinse) to two types of tumors.