776 resultados para Ligas de aço - Corrosão


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ligas que compreendem quantidades de metais expressas como porcentagens em peso, incluídas dentro dos seguintes intervalos: 8-20% de Al; 1-20% de Ag; 0-2% (de preferência 0,5-1%) de um metal minoritário (de preferência Co); e o resto até 1005 de Cu. As suas transformações martensíticas têm lugar a temperaturas superiores e aproximadamente 200°C, e próximas aos 400°C em alguns casos, sendo habituais as próximas aos 300°C. Possuem maior resistência à corrosão que as ligas convencionais. São úteis em novos campos de aplicação industrial como, por exemplo, no controle de temperatura em óleos de alto ponto de ebulição e em situações de grande desprendimento de calor por reações exotérmicas ou por grande roçamento.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The non-ferrous materials have got so many mechanical, physical and chemical advantageous properties so that is provided to them consolidated position in industry. In this context, aluminium alloys have been seen a lot on many applications of engineering areas – specially on automotive, aeronautical and aerospace due to their main properties such as low density, high corrosion resistance, favorable structure weight / material resistance relation, among others characteristics that are mencioned through this study. This study aims to analyze the aluminium alloys behavior on a general context when they are used on turning process, taking for examples the 6262 and 7050 aluminium alloys. In this way, the analysis studies the datas obtained during the turning tests realized on 3 steps each one; those datas are concerning the medium and total rugosities – obtained with the assistance of a portable Surface Roughness Finish Tester, as well as the chips obtained during the tests - visual analysis, and the cutting tools wear – with the assistance of an optical microscope, under different conditions of application of cutting fluids (dry machining, application of coolant in abundance and MQL – Minimum Quantity of Lubricant). The results concerning this study show detailed information about influence of cutting fluids on the machining by turning of the aluminium alloys related on this work and also about aluminium alloys in general when they are used on turning processes with different conditions from one another. By this way, it was evident the MQL technique is the best one for the 6262 alloy. However, for 7050 alloy, it was evident that the dry machining is responsible for the best results

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminum alloys have shown great potential for the automotive industry, especially aluminum alloys 6xxx series. This category has good mechanical strength and excellent corrosion resistance, important for the areas of construction and transport. The automotive industry has always shown great interest in the study of fatigue behavior, because structural components are subjected to cyclic and vibration loads, generating cracks and fracturing. The mechanical response depends on the material properties, applications, surface condition and microstructure. In this work was study the fatigue behavior of high cycle of machined bodies (not polished) and the effect of roughness on the fatigue life for three aluminum alloys of 6xxx series: AA6005, AA6351 and AA606, all in the T6 condition . S / N curves were made from fatigue tests in rotating bending (R = -1). The influence of roughness was studied by measuring the roughness of each specimen. Was compare the fatigue behavior of polished specimen and not polished specimens. The fractured surfaces of samples were observed by MEV, and it was observed that most of nucleation sites for fatigue crack is initiated below the surface

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminum Alloys are widely used as structural materials in the aerospace industry due to low weight, high mechanical strength and enduring corrosion resistance. Their resistance to corrosion is attributed to the rapidly formed stable oxide film (Al2O3) which spontaneously forms itself on the surface of the material. However, in the presence of aggressive ions, such as halide, Aluminum Alloys are subject to a localized process of corrosion. The electrochemical behavior of 7081-T73511 and 7050-T7451 Aluminum Alloys employed in the aerospace industry was investigated using a 0.6 M NaCl solution under the conditions of a controlled mass transport employing a rotating disk electrode. The theoretical limiting current density was determined by the Kouteki-Levich equation. The results confirmed that the inter-metallic Al7Cu2Fe acts as preferential cathode generating the galvanic coupling and the dissolution of the Aluminummatrix around it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An ideal biomaterial for dental implants must have very high biocompatibility, which means that such materials should not provoke any serious adverse tissue response. Also, used metal alloys must have high fatigue resistance due the masticatory force and good corrosion resistance. These properties are rendered by using alpha and beta stabilizers, such as Al, V, Ni, Fe, Cr, Cu, Zn. Commercially pure titanium (TiCP) is used often for dental and orthopedic implants manufacturing. However, sometimes other alloys are employed and consequently it is essential to research the chemical elements present in those alloys that could bring prejudice for the health. Present work investigated TiCP metal alloys used for dental implant manufacturing and evaluated the presence of stabilizing elements within existing limits and standards for such materials. For alloy characterization and identification of stabilizing elements it was used EDXRF technique. This method allows to perform qualitative and quantitative analysis of the materials using the spectra of the characteristic X-rays emitted by the elements present in the metal samples. The experimental setup was based on two X- rays tubes (AMPTEK Mini X model with Ag and Au targets), a X-123SDD detector (AMPTEK) and a 0.5mm Cu collimator, developed due to the sample characteristics. The other experimental setup used as a complementary technique is composed of an X-ray tube with a Mo target, collimator 0.65mm and XFlash (SDD) detector - ARTAX 200 (BRUKER). Other method for elemental characterization by energy dispersive spectroscopy (EDS) applied in present work was based on Scanning Electron Microscopy (SEM) EVO® (Zeeis). This method also was used to evaluate the surface microstructure of the sample. The percentual of Ti obtained in the elementary characterization was among 93.35 ± 0.17% and 95.34 ± 0.19 %. These values are considered below the reference limit of 98.635% to 99.5% for TiCP, established by Association of metals centric materials engineers and scientists Society (ASM). The presence of elements Al and V in all samples also contributed to underpin the fact that are not TiCP implants. The values for Al vary between 6.3 ± 1.3% and 3.7 ± 2.0% and for V, between 0.26 ± 0.09% and 0.112 ± 0.048%. According to the American Society for Testing and Materials (ASTM), these elements should not be present in TiCP and in accordance with the National Institute of Standards and Technology (NIST), the presence of Al should be <0.01% and V should be of 0.009 ± 0.001%. Obtained results showed that implant materials are not exactly TiCP but, were manufactured using Ti-Al-V alloy, which contained Fe, Ni, Cu and Zn. The quantitative analysis and elementary characterization of experimental results shows that the best accuracy and precision were reached with X-Ray tube with Au target and collimator of 0.5 mm. Use of technique of EDS confirmed the results of EDXRF for Ti-Al-V alloy. Evaluating the surface microstructure by SEM of the implants, it was possible to infer that ten of the thirteen studied samples are contemporaneous, rough surface and three with machined surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nickel alloys are frequently used in applications that require resistance at high temperatures associated with resistance to corrosion. Alloys of Ni-Si-C can be obtained by means of powder metallurgy in which powder mixtures are made of metallic nickel powders with additions of various alloying carriers for such were used in this study SiC, Si3N4 or Si metal with graphite. Carbonyl Ni powder with mean particle size of 11 mM were mixed with 3 wt% of SiC powders with an average particle size of 15, 30 and 50 μm and further samples were obtained containing 4 to 5% by mass of SiC with average particle size of 15 μm. Samples were also obtained by varying the carrier alloy, these being Si3N4 powder with graphite, with average particle size of 1.5 and 5 μm, respectively. As a metallic Si graphite with average particle size of 12.5 and 5 μm, respectively. The reference material used was nickel carbonyl sintered without adding carriers. Microstructural characterization of the alloys was made by optical microscopy and scanning electron microscopy with semi-quantitative chemical analysis. We determined the densities of the samples and measurement of microhardness. We studied the dissociation of carriers alloy after sintering at 1200 ° C for 60 minutes. Was evaluated also in the same sintering conditions, the influence of the variation of average particle size of the SiC carrier to the proportion of 3% by mass. Finally, we studied the influence of variation of the temperatures of sintering at 950, 1080 and 1200 ° C without landing and also with heights of 30, 60, 120 and 240 minutes for sintering where the temperature was 950 °C. Dilatometry curves showed that the SiC sintered Ni favors more effectively than other carriers alloy analyzed. SiC with average particle size of 15 μm active sintering the alloy more effectively than other SiC used. However, with the chemical and morphological analyzes for all leagues, it was observed that there was dissociation of SiC and Si3N4, as well as diffusion of Si in Ni matrix and carbon cluster and dispersed in the matrix, which also occurred for the alloys with Si carriers and metallic graphite. So the league that was presented better results containing Si Ni with graphite metallic alloy as carriers, since this had dispersed graphite best in the league, reaching the microstructural model proposed, which is necessary for material characteristic of solid lubricant, so how we got the best results when the density and hardness of the alloy

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal-ceramic interfaces are present in tricone drill bits with hard ceramic inserts for oil well drilling operations. The combination of actions of cutting, crushing and breaking up of rocks results in the degradation of tricone drill bits by wear, total or partial rupture of the drill bit body or the ceramic inserts, thermal shock and corrosion. Also the improper pressfitting of the ceramic inserts on the bit body may cause its total detachment, and promote serious damages to the drill bit. The improvement on the production process of metal-ceramic interfaces can eliminate or minimize some of above-mentioned failures presented in tricone drill bits, optimizing their lifetime and so reducing drilling metric cost. Brazing is a widely established technique to join metal-ceramic materials, and may be an excellent alternative to the common mechanical press fitting process of hard ceramic inserts on the steel bit body for tricone drill bit. Wetting phenomena plays an essential role in the production of metal/ceramic interfaces when a liquid phase is present in the process. In this work, 72Silver-28Copper eutectic based brazing alloys were melted onto zirconia, silicon nitride and tungsten carbide/Co substrates under high vacuum. Contact angle evolution was measured and graphically plotted, and the interfaces produced were analysed by SEM-EDX. The AgCu eutectic alloy did not wet any ceramic substrates, showing high contact angles, and so without chemical interaction between the materials. Better results were found for the systemns containing 3%wt of titanium in the AgCu alloy. The presence os titanium as a solute in the alloy produces wettable cand termodinamically stable compounds, increasing the ceramics wetting beahviour

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As ligas com memória de forma Ni-Ti apresentam diversas características bastante úteis, das quais podemos realçar a sua elevada resistência à corrosão, às vibrações e geração de forças superiores quando comparadas com outros atuadores. Estas ligas apresentam diversas áreas de aplicabilidade em diferentes aéreas de pesquisa, como a metalomecânica, a robótica, aplicações espaciais, sendo mais relevante para este trabalho a sua aplicação em mecanismos de segurança para portas e acessos. Com este trabalho, pretendemos contribuir para uma forma eficaz de combate e contenção de incêndios em navios, através da apresentação de um mecanismo que vai permitir o corte de ventilação e isolamento no local do incêndio, permitindo criar uma fronteira de fumos que levará ao combate do incêndio por asfixia. O trabalho descreve um mecanismo idealizado com a utilização de ligas com memória de forma, que vai proceder à libertação de um flap, para isolamento da ventilação, na presença de temperatura proveniente do incêndio. Descreve também ensaios termomecânicos realizados, para determinação das características das molas e seu comportamento em determinadas situações chave. Para isto, irão ser utilizadas duas molas com diferentes gamas de temperatura, com o intuito de demonstrar a eficácia na utilização de diversos atuadores de ligas com memória de forma. Todos os testes foram feitos na presença de gamas de temperatura que se assemelham aos valores de atuação dos sistemas automáticos de extinção por água, pelo que os resultados obtidos, ilustram a verdadeira eficácia e utilidade do mecanismo, em casos reais.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The resistance of aluminum and their alloys, to the corrosion phenomenon, in aqueous solutions, is a result of the oxide layer formed. However, the corrosion process in the aluminum alloy is associated with the presence a second phase of particles or the presence of chloride ions which promote the disruption of the oxide layer located producing the corrosion process. On the other hand, the term water produced is used to describe the water after the separation of the oil and gas in API separators. The volumes of produced water arrive around 5 more times to the volume of oil produced. The greatest feature of the water is the presence of numerous pollutants. Due to the increased volume of waste around the world in the current decade, the outcome and the effect of the discharge of produced water on the environment has recently become an important issue of environmental concern where numerous treatments are aimed at reducing these contaminants before disposal. Then, this study aims to investigate the electrochemical corrosion behavior of aluminum alloy 6060 in presence of water produced and the influence of organic components as well as chloride ions, by using the electrochemical techniques of linear polarization. The modification of the passive layer and the likely breakpoints were observed by atomic force microscopy (AFM). In the pit formation potential around -0.4 to -0.8 V/EAg/AgCl was observed that the diffusion of chloride ions occurs via the layer formed with the probable formation of pits. Whereas, at temperatures above 65 °C, it was observed that the range of potential for thepit formation was -0.4 to -0.5 V/EAg/AgCl. In all reactions, the concentration of Al(OH)3 in the form of a gel was observed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trata da objetividade da Ética e da corrosão social provocada pela corrupção, procurando delimitar qual seria o derradeiro denominador comum de uma comunidade dilacerada.