897 resultados para Life-time distribution
Resumo:
In this dissertation, we investigated two types of traveling ionospheric disturbances (TIDs)/gravity waves (GWs) triggered separately by auroral energy input during super geomagnetic storms and solar terminator (ST) under quiet geomagnetic conditions (kp<3+) using TEC measurements from the global network of GPS receivers. Research into the generation and propagation of TIDs/GWs during storms greatly enhance our understandings on the evolution processes of energy transportation from the high-latitude’s magnetosphere to the low-latitude ionosphere and the conjugated effect of TIDs propagation between the northern and southern hemispheres. Our results revealed that the conjugacy of propagation direction between the northern and southern hemispheres was subject to the influence of Coriolis force. We also figure out the evolution processes of ionospheric disturbances at the global scale. These are important topics that had not been well addressed previously. In addition, we also obtained thee wave structures of medium scale TIDs excited by the solar terminator (ST) moving over the northern America and physical mechanisms involved. Our observations confirm that the ST is a stable and repetitive source of ionospheric wave disturbances and the evidence of solar terminator generated disturbances has been demonstrated experimentally via the GPS TEC measurement. The main researches and results of this dissertation are as follows. First, the global traveling ionospheric disturbances (TIDs) during the drastic magnetic storms of October 29–31, 2003 were analyzed using the Global Position System (GPS) total electron content (TEC) data observed in the Asian-Australian, European and North American sectors. We collected the most comprehensive set of the TEC data from more than 900 GPS stations on the International GNSS Services (IGS) website and introduce here a strategy that combines polynomial fitting and multi-channel maximum entropy spectral analysis to obtain TID parameters. Moreover, in collaboration with my thesis advisor, I have developed an imaging technique of 2-dimensional map of TIDs structures to obtain spatial and temporal maps of large scale traveling ionospheric disturbances (LSTIDs). The clear structures of TEC perturbations map during the passage of TIDs were displayed. The results of our study are summarized as follows: (1) Large-scale TIDs (LSTIDs) and medium-scale TIDs (MSTIDs) were detected in all three sectors after the sudden commencement (SC) of the magnetic storm, and their features showed longitudinal and latitudinal dependences. The duration of TIDs was longer at higher latitudes than at middle latitudes, with a maximum of about 16 h. The TEC variation amplitude of LSTIDs was larger in the North American sector than in the two other sectors. At the lower latitudes, the ionospheric perturbations were more complicated, and their duration and amplitude were relatively longer and larger. (2) The periods and phase speeds of TIDs were different in these three sectors. In Europe, the TIDs propagated southward; in North America and Asia, the TIDs propagated southwestward; in the near-equator region, the disturbances propagated with the azimuth (the angle of the propagation direction of the LSTIDs measured clockwise from due north with 0°) of 210° showing the influence of Coriolis force; in the Southern Hemisphere, the LSTIDs propagated conjugatedly northwestward. Both the southwestward and northeastward propagating LSTIDs are found in the equatorial region. These results mean that the Coriolis effect cannot be ignored for the wave propagation of LSTIDs and that the propagation direction is correlated with the polar magnetic activity. (3) The day (day of year: 301) before the SC (sudden commencement) of magnetic storm, we observed a sudden TEC skip disturbances (±10 TECU). It should be a response for the high flux of proton during the solar flare event, but not the magnetic storms. Next, the most comprehensive and dense GPS network’s data from North-America region were used in this paper to analyze the medium scale traveling ionospheric disturbances (MSTIDs) which were generated by the moving solar terminator during the quiet days in 2005. We applied the multi-channel maximum entropy spectral analysis to calculated TID parameters, and found that the occurrence of ST-MSTIDs depends on the seasonal variations. The results of our study are summarized as follows: (1) MSTIDs stimulated by the moving ST (ST-MSTIDs) are detected at mid-latitudes after the passage of the solar terminator with the life time of 2~3 hours and the variation amplitude of 0.2~0.8 TECU. Spectral analysis indicated that the horizontal wavelength, average period, horizontal phase velocity of the MSTIDs are around 300±150 km,150±80 m/s and 25±15 min, respectively. In addition, ST-MSTIDs have wave fronts elongating the moving ST direction and almost parallel to ST. (2) The statistical results demonstrate that the dusk MSTIDs stimulated by ST is more obvious than the dawn MSTIDs in summer. On the contrary, the more-pronounced dawn MSTIDs occurs in winter. (3) Further analysis indicates that the seasonal variations of ST-MSTIDs occurrence frequency are most probably related to the seasonal differences of the variations of EUV flux in the ionosphere region and recombination process during sunrise and sunset period at mid-latitudes. Statistical study of occurrence characteristics of TIDs using the GPS network in North-American and European during solar maximum, In conclusion, statistical studies of the propagation characteristics of TIDs, which excited by the two common origins including geomagnetic storms and moving solar terminator, were involved with global GPS TEC databasein this thesis. We employed the multichannel maximum entropy spectral analysis method to diagnose the characteristics of propagation and evolvement of ionospheric disturbances, also, the characteristics of their regional distribution and climatological variations were revealed by the statistic analysis. The results of these studies can improve our knowledge about the energy transfer in the solar-terrestrial system and the coupling process between upper and lower atmosphere (thermosphere-ionosphere-mesosphere). On the other hand, our results of the investigation on TIDs generated by particular linear origin such as ST are important for developing ionospheric irregularity physics and modeling the transionosphere radio wave propagation. Besides, the GPS TEC representation of the ST-generated ionospheric structure suggests a better possibility for investigating this phenomenon. Subsequently, there are scientific meaning of the result of this dissertation to deeply discuss the energy transfer and coupling in the ionosphere, as well as realistic value to space weather forecast in the ionosphere region.
Resumo:
This paper describes how modeling technology has been used in providing fatigue life time data of two flip-chip models. Full-scale three-dimensional modeling of flip-chips under cyclic thermal loading has been combined with solder joint stand-off height prediction to analyze the stress and strain conditions in the two models. The Coffin-Manson empirical relationship is employed to predict the fatigue life times of the solder interconnects. In order to help designers in selecting the underfill material and the printed circuit board, the Young's modulus and the coefficient of thermal expansion of the underfill, as well as the thickness of the printed circuit boards are treated as variable parameters. Fatigue life times are therefore calculated over a range of these material and geometry parameters. In this paper we will also describe how the use of micro-via technology may affect fatigue life
Resumo:
This paper considers a Markovian bulk-arriving queue modified to allow both mass arrivals when the queue is idle and mass departures which allow for the possibility of removing the entire workload. Properties of queues which terminate when the server becomes idle are developed first, since these play a key role in later developments. Results for the case of mass arrivals, but no mass annihilation, are then constructed with specific attention being paid to recurrence properties, equilibrium queue-size structure, and waiting-time distribution. A closed-form expression for the expected queue size and its Laplace transform are also established. All of these results are then generalised to allow for the removal of the entire workload, with closed-form expressions being developed for the equilibrium size and waiting-time distributions.
Resumo:
This work explores the impact of response time distributions on high-rise building evacuation. The analysis utilises response times extracted from printed accounts and interviews of evacuees from the WTC North Tower evacuation of 11 September 2001. Evacuation simulations produced using these “real” response time distributions are compared with simulations produced using instant and engineering response time distributions. Results suggest that while typical engineering approximations to the response time distribution may produce reasonable evacuation times for up to 90% of the building population, using this approach may underestimate total evacuation times by as much as 61%. These observations are applicable to situations involving large high-rise buildings in which travel times are generally expected to be greater than response times
Resumo:
The number of software applications available on the Internet for distributing video streams in real time over P2P networks has grown quickly in the last two years. Typical this kind of distribution is made by television channel broadcasters which try to make their content globally available, using viewer's resources to support a large scale distribution of video without incurring in incremental costs. However, the lack of adaptation in video quality, combined with the lack of a standard protocol for this kind of multimedia distribution has driven content providers to basically ignore it as a solution for video delivery over the Internet. While the scalable extension of the H. 264 encoding (H.264/SVC) can be used to support terminal and network heterogeneity, it is not clear how it can be integrated in a P2P overlay to form a large scale and real time distribution. In this paper, we start by defining a solution that combines the most popular P2P file-sharing protocol, the BitTorrent, with the H. 264/SVC encoding for a real-time video content delivery. Using this solution we then evaluate the effect of several parameters in the quality received by peers.
Resumo:
Mesures effectuées dans le laboratoire de caractérisation optique des semi-conducteurs du Prof. Richard Leonelli du département de physique de l'université de Montréal. Les nanofils d'InGaN/GaN ont été fournis par le groupe du Prof. Zetian Mi du département de génie électrique et informatique de l'université McGill.
Resumo:
The thesis deals with analysis of some Stochastic Inventory Models with Pooling/Retrial of Customers.. In the first model we analyze an (s,S) production Inventory system with retrial of customers. Arrival of customers from outside the system form a Poisson process. The inter production times are exponentially distributed with parameter µ. When inventory level reaches zero further arriving demands are sent to the orbit which has capacity M(<∞). Customers, who find the orbit full and inventory level at zero are lost to the system. Demands arising from the orbital customers are exponentially distributed with parameter γ. In the model-II we extend these results to perishable inventory system assuming that the life-time of each item follows exponential with parameter θ. The study deals with an (s,S) production inventory with service times and retrial of unsatisfied customers. Primary demands occur according to a Markovian Arrival Process(MAP). Consider an (s,S)-retrial inventory with service time in which primary demands occur according to a Batch Markovian Arrival Process (BMAP). The inventory is controlled by the (s,S) policy and (s,S) inventory system with service time. Primary demands occur according to Poissson process with parameter λ. The study concentrates two models. In the first model we analyze an (s,S) Inventory system with postponed demands where arrivals of demands form a Poisson process. In the second model, we extend our results to perishable inventory system assuming that the life-time of each item follows exponential distribution with parameter θ. Also it is assumed that when inventory level is zero the arriving demands choose to enter the pool with probability β and with complementary probability (1- β) it is lost for ever. Finally it analyze an (s,S) production inventory system with switching time. A lot of work is reported under the assumption that the switching time is negligible but this is not the case for several real life situation.
Resumo:
The present study on the characterization of probability distributions using the residual entropy function. The concept of entropy is extensively used in literature as a quantitative measure of uncertainty associated with a random phenomenon. The commonly used life time models in reliability Theory are exponential distribution, Pareto distribution, Beta distribution, Weibull distribution and gamma distribution. Several characterization theorems are obtained for the above models using reliability concepts such as failure rate, mean residual life function, vitality function, variance residual life function etc. Most of the works on characterization of distributions in the reliability context centers around the failure rate or the residual life function. The important aspect of interest in the study of entropy is that of locating distributions for which the shannon’s entropy is maximum subject to certain restrictions on the underlying random variable. The geometric vitality function and examine its properties. It is established that the geometric vitality function determines the distribution uniquely. The problem of averaging the residual entropy function is examined, and also the truncated form version of entropies of higher order are defined. In this study it is established that the residual entropy function determines the distribution uniquely and that the constancy of the same is characteristics to the geometric distribution
Resumo:
Multivariate lifetime data arise in various forms including recurrent event data when individuals are followed to observe the sequence of occurrences of a certain type of event; correlated lifetime when an individual is followed for the occurrence of two or more types of events, or when distinct individuals have dependent event times. In most studies there are covariates such as treatments, group indicators, individual characteristics, or environmental conditions, whose relationship to lifetime is of interest. This leads to a consideration of regression models.The well known Cox proportional hazards model and its variations, using the marginal hazard functions employed for the analysis of multivariate survival data in literature are not sufficient to explain the complete dependence structure of pair of lifetimes on the covariate vector. Motivated by this, in Chapter 2, we introduced a bivariate proportional hazards model using vector hazard function of Johnson and Kotz (1975), in which the covariates under study have different effect on two components of the vector hazard function. The proposed model is useful in real life situations to study the dependence structure of pair of lifetimes on the covariate vector . The well known partial likelihood approach is used for the estimation of parameter vectors. We then introduced a bivariate proportional hazards model for gap times of recurrent events in Chapter 3. The model incorporates both marginal and joint dependence of the distribution of gap times on the covariate vector . In many fields of application, mean residual life function is considered superior concept than the hazard function. Motivated by this, in Chapter 4, we considered a new semi-parametric model, bivariate proportional mean residual life time model, to assess the relationship between mean residual life and covariates for gap time of recurrent events. The counting process approach is used for the inference procedures of the gap time of recurrent events. In many survival studies, the distribution of lifetime may depend on the distribution of censoring time. In Chapter 5, we introduced a proportional hazards model for duration times and developed inference procedures under dependent (informative) censoring. In Chapter 6, we introduced a bivariate proportional hazards model for competing risks data under right censoring. The asymptotic properties of the estimators of the parameters of different models developed in previous chapters, were studied. The proposed models were applied to various real life situations.
Resumo:
The challenge of reducing carbon emission and achieving emission target until 2050, has become a key development strategy of energy distribution for each country. The automotive industries, as the important portion of implementing energy requirements, are making some related researches to meet energy requirements and customer requirements. For modern energy requirements, it should be clean, green and renewable. For customer requirements, it should be economic, reliable and long life time. Regarding increasing requirements on the market and enlarged customer quantity, EVs and PHEV are more and more important for automotive manufactures. Normally for EVs and PHEV there are two important key parts, which are battery package and power electronics composing of critical components. A rechargeable battery is a quite important element for achieving cost competitiveness, which is mainly used to story energy and provide continue energy to drive an electric motor. In order to recharge battery and drive the electric motor, power electronics group is an essential bridge to convert different energy types for both of them. In modern power electronics there are many different topologies such as non-isolated and isolated power converters which can be used to implement for charging battery. One of most used converter topology is multiphase interleaved power converter, pri- marily due to its prominent advantages, which is frequently employed to obtain optimal dynamic response, high effciency and compact converter size. Concerning its usage, many detailed investigations regarding topology, control strategy and devices have been done. In this thesis, the core research is to investigate some branched contents in term of issues analysis and optimization approaches of building magnetic component. This work starts with an introduction of reasons of developing EVs and PEHV and an overview of different possible topologies regarding specific application requirements. Because of less components, high reliability, high effciency and also no special safety requirement, non-isolated multiphase interleaved converter is selected as the basic research topology of founded W-charge project for investigating its advantages and potential branches on using optimized magnetic components. Following, all those proposed aspects and approaches are investigated and analyzed in details in order to verify constrains and advantages through using integrated coupled inductors. Furthermore, digital controller concept and a novel tapped-inductor topology is proposed for multiphase power converter and electric vehicle application.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Dynamic light scattering (DLS), time-resolved fluorescence quenching (TRFQ), and isothermal titration microcalorimetry have been used to show that, in dilute solution, low molecular weight poly(ethylene glycol) (PEG, M-w = 12 kDa) interacts with the nonionic surfactant octaethylene glycol n-dodecyl monoether, C12E8, to form a complex. Whereas the relaxation time distributions for the binary C12E8/water and PEG/water systems are unimodal, in the ternary mixtures they may be either uni- or bimodal depending on the relative concentrations of the components. At low concentrations of PEG or surfactant, the components of the relaxation time distribution are unresolvable, but the distribution becomes bimodal at higher concentrations of either polymer or surfactant. For the ternary system in excess surfactant, we ascribe, on the basis of the changes in apparent hydrodynamic radii and the scattered intensities, the fast mode to a single micelle, the surface of which is associated with the polymer and the slow mode to a similar complex but containing two or three micelles per PEG chain. Titration microcalorimetry results show that the interaction between C12E8, and PEG is exothermic and about 1 kJ mol(-1) at concentrations higher than the CMC of C12E8. The aggregation number, obtained by TRFQ, is roughly constant when either the PEG or the C12E8 concentration is increased at a given concentration of the second component, owing to the increasing amount of surfactant micelles inside the complex.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)