759 resultados para Librry and Information learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recommender system is a specific type of intelligent systems, which exploits historical user ratings on items and/or auxiliary information to make recommendations on items to the users. It plays a critical role in a wide range of online shopping, e-commercial services and social networking applications. Collaborative filtering (CF) is the most popular approaches used for recommender systems, but it suffers from complete cold start (CCS) problem where no rating record are available and incomplete cold start (ICS) problem where only a small number of rating records are available for some new items or users in the system. In this paper, we propose two recommendation models to solve the CCS and ICS problems for new items, which are based on a framework of tightly coupled CF approach and deep learning neural network. A specific deep neural network SADE is used to extract the content features of the items. The state of the art CF model, timeSVD++, which models and utilizes temporal dynamics of user preferences and item features, is modified to take the content features into prediction of ratings for cold start items. Extensive experiments on a large Netflix rating dataset of movies are performed, which show that our proposed recommendation models largely outperform the baseline models for rating prediction of cold start items. The two proposed recommendation models are also evaluated and compared on ICS items, and a flexible scheme of model retraining and switching is proposed to deal with the transition of items from cold start to non-cold start status. The experiment results on Netflix movie recommendation show the tight coupling of CF approach and deep learning neural network is feasible and very effective for cold start item recommendation. The design is general and can be applied to many other recommender systems for online shopping and social networking applications. The solution of cold start item problem can largely improve user experience and trust of recommender systems, and effectively promote cold start items.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, we investigate the role of applied physics in epidemiological surveillance through the application of mathematical models, network science and machine learning. The spread of a communicable disease depends on many biological, social, and health factors. The large masses of data available make it possible, on the one hand, to monitor the evolution and spread of pathogenic organisms; on the other hand, to study the behavior of people, their opinions and habits. Presented here are three lines of research in which an attempt was made to solve real epidemiological problems through data analysis and the use of statistical and mathematical models. In Chapter 1, we applied language-inspired Deep Learning models to transform influenza protein sequences into vectors encoding their information content. We then attempted to reconstruct the antigenic properties of different viral strains using regression models and to identify the mutations responsible for vaccine escape. In Chapter 2, we constructed a compartmental model to describe the spread of a bacterium within a hospital ward. The model was informed and validated on time series of clinical measurements, and a sensitivity analysis was used to assess the impact of different control measures. Finally (Chapter 3) we reconstructed the network of retweets among COVID-19 themed Twitter users in the early months of the SARS-CoV-2 pandemic. By means of community detection algorithms and centrality measures, we characterized users’ attention shifts in the network, showing that scientific communities, initially the most retweeted, lost influence over time to national political communities. In the Conclusion, we highlighted the importance of the work done in light of the main contemporary challenges for epidemiological surveillance. In particular, we present reflections on the importance of nowcasting and forecasting, the relationship between data and scientific research, and the need to unite the different scales of epidemiological surveillance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To determine the mean critical fusion frequency and the short-term fluctuation, to analyze the influence of age, gender, and the learning effect in healthy subjects undergoing flicker perimetry. METHODS: Study 1 - 95 healthy subjects underwent flicker perimetry once in one eye. Mean critical fusion frequency values were compared between genders, and the influence of age was evaluated using linear regression analysis. Study 2 - 20 healthy subjects underwent flicker perimetry 5 times in one eye. The first 3 sessions were separated by an interval of 1 to 30 days, whereas the last 3 sessions were performed within the same day. The first 3 sessions were used to investigate the presence of a learning effect, whereas the last 3 tests were used to calculate short-term fluctuation. RESULTS: Study 1 - Linear regression analysis demonstrated that mean global, foveal, central, and critical fusion frequency per quadrant significantly decreased with age (p<0.05).There were no statistically significant differences in mean critical fusion frequency values between males and females (p>0.05), with the exception of the central area and inferonasal quadrant (p=0.049 and p=0.011, respectively), where the values were lower in females. Study 2 - Mean global (p=0.014), central (p=0.008), and peripheral (p=0.03) critical fusion frequency were significantly lower in the first session compared to the second and third sessions. The mean global short-term fluctuation was 5.06±1.13 Hz, the mean interindividual and intraindividual variabilities were 11.2±2.8% and 6.4±1.5%, respectively. CONCLUSION: This study suggests that, in healthy subjects, critical fusion frequency decreases with age, that flicker perimetry is associated with a learning effect, and that a moderately high short-term fluctuation is expected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The parallel mutation-selection evolutionary dynamics, in which mutation and replication are independent events, is solved exactly in the case that the Malthusian fitnesses associated to the genomes are described by the random energy model (REM) and by a ferromagnetic version of the REM. The solution method uses the mapping of the evolutionary dynamics into a quantum Ising chain in a transverse field and the Suzuki-Trotter formalism to calculate the transition probabilities between configurations at different times. We find that in the case of the REM landscape the dynamics can exhibit three distinct regimes: pure diffusion or stasis for short times, depending on the fitness of the initial configuration, and a spin-glass regime for large times. The dynamic transition between these dynamical regimes is marked by discontinuities in the mean-fitness as well as in the overlap with the initial reference sequence. The relaxation to equilibrium is described by an inverse time decay. In the ferromagnetic REM, we find in addition to these three regimes, a ferromagnetic regime where the overlap and the mean-fitness are frozen. In this case, the system relaxes to equilibrium in a finite time. The relevance of our results to information processing aspects of evolution is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This text aims to approach museums` role in the production of knowledge and how objects are transformed into documents when museums incorporate them. On accepting the effects of such transformation, museums start working not only with material goods, but also symbolic goods. The collection manager or exhibition curator communicate through documents rather than bringing into light its intrinsic content. In this sense, every process involving museum documents, from the selection of collections to exhibitions, has a rhetoric and ideological nature which is given. Museums must search for meanings through correlations established in the process of producing information. Exhibitions should present objects in multiple contexts, giving visitors the opportunity to participate and attribute their own meanings to them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A great deal of attention in the supply chain management literature is devoted to study material and demand information flows and their coordination. But in many situations, supply chains may convey information from different nature, they may be an important channel companies have to deliver knowledge, or specifically, technical information to the market. This paper studies the technical flow and highlights its particular requirements. Drawing upon a qualitative field research, it studies pharmaceutical companies, since those companies face a very specific challenge: consumers do not have discretion over their choices, ethical drugs must be prescribed by physicians to be bought and used by final consumers. Technical information flow is rich, and must be redundant and early delivered at multiple points. Thus, apart from the regular material channel where products and order information flow, those companies build a specialized information channel, developed to communicate to those who need it to create demand. Conclusions can be extended to supply chains where products and services are complex and decision makers must be clearly informed about technology-related information. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three main models of parameter setting have been proposed: the Variational model proposed by Yang (2002; 2004), the Structured Acquisition model endorsed by Baker (2001; 2005), and the Very Early Parameter Setting (VEPS) model advanced by Wexler (1998). The VEPS model contends that parameters are set early. The Variational model supposes that children employ statistical learning mechanisms to decide among competing parameter values, so this model anticipates delays in parameter setting when critical input is sparse, and gradual setting of parameters. On the Structured Acquisition model, delays occur because parameters form a hierarchy, with higher-level parameters set before lower-level parameters. Assuming that children freely choose the initial value, children sometimes will miss-set parameters. However when that happens, the input is expected to trigger a precipitous rise in one parameter value and a corresponding decline in the other value. We will point to the kind of child language data that is needed in order to adjudicate among these competing models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following the application of the remember/know paradigm to student learning by Conway et al. (1997), this study examined changes in learning and memory awareness of university students in a lecture course and a research methods course. The proposed shift from a dominance of 'remember' awareness in early learning to a dominance of 'know' awareness as learning progresses and schematization occurs was evident for the methods course but not for the lecture course. The patterns of remember and know awareness and proposed associated levels of schematization were supported by a separate measure of the quality of student learning using the SOLO (Structure of Observed Learning Outcomes) Taxonomy. As found by previous research, the remember-to-know shift and schematization of knowledge is dependent upon type of course and level of achievement. Findings are discussed in terms of the utility of the methodology used, the theoretical implications and the applications to educational practice. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluative learning theory states that affective learning, the acquisition of likes and dislikes, is qualitatively different from relational learning, the learning of predictive relationships among stimuli. Three experiments tested the prediction derived from evaluative learning theory that relational learning, but not affective learning, is affected by stimulus competition by comparing performance during two conditional stimuli, one trained in a superconditioning procedure and the other in a blocking procedure. Ratings of unconditional stimulus expectancy and electrodermal responses indicated stimulus competition in relational learning. Evidence for stimulus competition in affective learning was provided by verbal ratings of conditional stimulus pleasantness and by measures of blink startle modulation. Taken together, the present experiments demonstrate stimulus competition in relational and affective learning, a result inconsistent with evaluative learning theory. (C) 2001 Academic Press.