913 resultados para Librry and Information learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Australian Library and Information Association (ALIA) is the professional association for the Australian library and information services sector. It seeks to empower the profession in the development, promotion and delivery of quality library and information services to the nation, through leadership, advocacy, and mutual support. The ALIA represents the interest of 6000 members, the profession and Australia's 12 million library users. The objects of the Association are listed in its constitution. They are To promote the free flow of information and ideas in the interest of all Australians and a thriving culture, economy, and democracy. To promote and improve the services provided by all kinds of library and information agencies. To ensure the high standard of personnel engaged in information provision and foster their professional interests and aspirations. To represent the interests of members to governments, other organizations, and the community. To encourage people to contribute to the improvement of library and information services through support and membership of the association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The literature around Library 2.0 remains largely theoretical with few empirical studies and is particularly limited in developing countries such as Indonesia. This study addresses this gap and aims to provide information about the current state of knowledge on Indonesian LIS professionals’ understanding of Library 2.0. The researchers used qualitative and quantitative approaches for this study, asking thirteen closed- and open-ended questions in an online survey. The researchers used descriptive and in vivo coding to analyze the responses. Through their analysis, they identified three themes: technology, interactivity, and awareness of Library 2.0. Respondents demonstrated awareness of Library 2.0 and a basic understanding of the roles of interactivity and technology in libraries. However, overreliance on technology used in libraries to conceptualize Library 2.0 without an emphasis on its core characteristics and principles could lead to the misalignment of limited resources. The study results will potentially strengthen the research base for Library 2.0 practice as well as inform LIS curriculum in Indonesia so as to develop practitioners who are able to adapt to users’ changing needs and expectations. It is expected that the preliminary data from this study could be used to design a much larger and more complex future research project in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perceiving students, science students especially, as mere consumers of facts and information belies the importance of a need to engage them with the principles underlying those facts and is counter-intuitive to the facilitation of knowledge and understanding. Traditional didactic lecture approaches need a re-think if student classroom engagement and active learning are to be valued over fact memorisation and fact recall. In our undergraduate biomedical science programs across Years 1, 2 and 3 in the Faculty of Health at QUT, we have developed an authentic learning model with an embedded suite of pedagogical strategies that foster classroom engagement and allow for active learning in the sub-discipline area of medical bacteriology. The suite of pedagogical tools we have developed have been designed to enable their translation, with appropriate fine-tuning, to most biomedical and allied health discipline teaching and learning contexts. Indeed, aspects of the pedagogy have been successfully translated to the nursing microbiology study stream at QUT. The aims underpinning the pedagogy are for our students to: (1) Connect scientific theory with scientific practice in a more direct and authentic way, (2) Construct factual knowledge and facilitate a deeper understanding, and (3) Develop and refine their higher order flexible thinking and problem solving skills, both semi-independently and independently. The mindset and role of the teaching staff is critical to this approach since for the strategy to be successful tertiary teachers need to abandon traditional instructional modalities based on one-way information delivery. Face-to-face classroom interactions between students and lecturer enable realisation of pedagogical aims (1), (2) and (3). The strategy we have adopted encourages teachers to view themselves more as expert guides in what is very much a student-focused process of scientific exploration and learning. Specific pedagogical strategies embedded in the authentic learning model we have developed include: (i) interactive lecture-tutorial hybrids or lectorials featuring teacher role-plays as well as class-level question-and-answer sessions, (ii) inclusion of “dry” laboratory activities during lectorials to prepare students for the wet laboratory to follow, (iii) real-world problem-solving exercises conducted during both lectorials and wet laboratory sessions, and (iv) designing class activities and formative assessments that probe a student’s higher order flexible thinking skills. Flexible thinking in this context encompasses analytical, critical, deductive, scientific and professional thinking modes. The strategic approach outlined above is designed to provide multiple opportunities for students to apply principles flexibly according to a given situation or context, to adapt methods of inquiry strategically, to go beyond mechanical application of formulaic approaches, and to as much as possible self-appraise their own thinking and problem solving. The pedagogical tools have been developed within both workplace (real world) and theoretical frameworks. The philosophical core of the pedagogy is a coherent pathway of teaching and learning which we, and many of our students, believe is more conducive to student engagement and active learning in the classroom. Qualitative and quantitative data derived from online and hardcopy evaluations, solicited and unsolicited student and graduate feedback, anecdotal evidence as well as peer review indicate that: (i) our students are engaging with the pedagogy, (ii) a constructivist, authentic-learning approach promotes active learning, and (iii) students are better prepared for workplace transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Thesis, we develop theory and methods for computational data analysis. The problems in data analysis are approached from three perspectives: statistical learning theory, the Bayesian framework, and the information-theoretic minimum description length (MDL) principle. Contributions in statistical learning theory address the possibility of generalization to unseen cases, and regression analysis with partially observed data with an application to mobile device positioning. In the second part of the Thesis, we discuss so called Bayesian network classifiers, and show that they are closely related to logistic regression models. In the final part, we apply the MDL principle to tracing the history of old manuscripts, and to noise reduction in digital signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research investigated high school students’ experiences of informed learning in a literacy development workshop. It was conducted in the library of an Australian high school with a low socio-economic population. Building upon students’ fascination with Manga fiction and artwork, the workshop was part of a larger university-community engagement project Crossing Boundaries with Reading which aimed to address widespread literacy challenges at the school. The paper first provides a brief literature review that introduces the concept of informed learning, or the experience of using information to learn. In practice, informed learning fosters simultaneous learning about using information and learning about a topic. Thus, information is a transformative force that extends beyond functional information literacy skills. Then, the paper outlines the phenomenographic methodology used in this study, the workshop context and the research participants. The findings reveal three different ways that students experienced the workshop: as an art lesson; as a life lesson; and as an informed learning lesson. The discussion highlights the power of informed learning as a holistic approach to information literacy education. The study’s findings are significant as students from low socio-economic backgrounds are often at risk of experiencing disadvantage throughout their lives if they do not develop a range of literacies including the ability to use information effectively. Responding to this problem, the paper provides an empirically-based example of informed learning to support further research and develop professional practice. While the research context is limited to one high school library, the findings are of potential value for teacher-librarians, educators and information professionals elsewhere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical Coherence Tomography(OCT) is a popular, rapidly growing imaging technique with an increasing number of bio-medical applications due to its noninvasive nature. However, there are three major challenges in understanding and improving an OCT system: (1) Obtaining an OCT image is not easy. It either takes a real medical experiment or requires days of computer simulation. Without much data, it is difficult to study the physical processes underlying OCT imaging of different objects simply because there aren't many imaged objects. (2) Interpretation of an OCT image is also hard. This challenge is more profound than it appears. For instance, it would require a trained expert to tell from an OCT image of human skin whether there is a lesion or not. This is expensive in its own right, but even the expert cannot be sure about the exact size of the lesion or the width of the various skin layers. The take-away message is that analyzing an OCT image even from a high level would usually require a trained expert, and pixel-level interpretation is simply unrealistic. The reason is simple: we have OCT images but not their underlying ground-truth structure, so there is nothing to learn from. (3) The imaging depth of OCT is very limited (millimeter or sub-millimeter on human tissues). While OCT utilizes infrared light for illumination to stay noninvasive, the downside of this is that photons at such long wavelengths can only penetrate a limited depth into the tissue before getting back-scattered. To image a particular region of a tissue, photons first need to reach that region. As a result, OCT signals from deeper regions of the tissue are both weak (since few photons reached there) and distorted (due to multiple scatterings of the contributing photons). This fact alone makes OCT images very hard to interpret.

This thesis addresses the above challenges by successfully developing an advanced Monte Carlo simulation platform which is 10000 times faster than the state-of-the-art simulator in the literature, bringing down the simulation time from 360 hours to a single minute. This powerful simulation tool not only enables us to efficiently generate as many OCT images of objects with arbitrary structure and shape as we want on a common desktop computer, but it also provides us the underlying ground-truth of the simulated images at the same time because we dictate them at the beginning of the simulation. This is one of the key contributions of this thesis. What allows us to build such a powerful simulation tool includes a thorough understanding of the signal formation process, clever implementation of the importance sampling/photon splitting procedure, efficient use of a voxel-based mesh system in determining photon-mesh interception, and a parallel computation of different A-scans that consist a full OCT image, among other programming and mathematical tricks, which will be explained in detail later in the thesis.

Next we aim at the inverse problem: given an OCT image, predict/reconstruct its ground-truth structure on a pixel level. By solving this problem we would be able to interpret an OCT image completely and precisely without the help from a trained expert. It turns out that we can do much better. For simple structures we are able to reconstruct the ground-truth of an OCT image more than 98% correctly, and for more complicated structures (e.g., a multi-layered brain structure) we are looking at 93%. We achieved this through extensive uses of Machine Learning. The success of the Monte Carlo simulation already puts us in a great position by providing us with a great deal of data (effectively unlimited), in the form of (image, truth) pairs. Through a transformation of the high-dimensional response variable, we convert the learning task into a multi-output multi-class classification problem and a multi-output regression problem. We then build a hierarchy architecture of machine learning models (committee of experts) and train different parts of the architecture with specifically designed data sets. In prediction, an unseen OCT image first goes through a classification model to determine its structure (e.g., the number and the types of layers present in the image); then the image is handed to a regression model that is trained specifically for that particular structure to predict the length of the different layers and by doing so reconstruct the ground-truth of the image. We also demonstrate that ideas from Deep Learning can be useful to further improve the performance.

It is worth pointing out that solving the inverse problem automatically improves the imaging depth, since previously the lower half of an OCT image (i.e., greater depth) can be hardly seen but now becomes fully resolved. Interestingly, although OCT signals consisting the lower half of the image are weak, messy, and uninterpretable to human eyes, they still carry enough information which when fed into a well-trained machine learning model spits out precisely the true structure of the object being imaged. This is just another case where Artificial Intelligence (AI) outperforms human. To the best knowledge of the author, this thesis is not only a success but also the first attempt to reconstruct an OCT image at a pixel level. To even give a try on this kind of task, it would require fully annotated OCT images and a lot of them (hundreds or even thousands). This is clearly impossible without a powerful simulation tool like the one developed in this thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information theoretic active learning has been widely studied for probabilistic models. For simple regression an optimal myopic policy is easily tractable. However, for other tasks and with more complex models, such as classification with nonparametric models, the optimal solution is harder to compute. Current approaches make approximations to achieve tractability. We propose an approach that expresses information gain in terms of predictive entropies, and apply this method to the Gaussian Process Classifier (GPC). Our approach makes minimal approximations to the full information theoretic objective. Our experimental performance compares favourably to many popular active learning algorithms, and has equal or lower computational complexity. We compare well to decision theoretic approaches also, which are privy to more information and require much more computational time. Secondly, by developing further a reformulation of binary preference learning to a classification problem, we extend our algorithm to Gaussian Process preference learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most previous work on trainable language generation has focused on two paradigms: (a) using a statistical model to rank a set of generated utterances, or (b) using statistics to inform the generation decision process. Both approaches rely on the existence of a handcrafted generator, which limits their scalability to new domains. This paper presents BAGEL, a statistical language generator which uses dynamic Bayesian networks to learn from semantically-aligned data produced by 42 untrained annotators. A human evaluation shows that BAGEL can generate natural and informative utterances from unseen inputs in the information presentation domain. Additionally, generation performance on sparse datasets is improved significantly by using certainty-based active learning, yielding ratings close to the human gold standard with a fraction of the data. © 2010 Association for Computational Linguistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the use of independent component analysis (ICA) for speech feature extraction in digits speech recognition systems. We observe that this may be true for recognition tasks based on Geometrical Learning with little training data. In contrast to image processing, phase information is not essential for digits speech recognition. We therefore propose a new scheme that shows how the phase sensitivity can be removed by using an analytical description of the ICA-adapted basis functions. Furthermore, since the basis functions are not shift invariant, we extend the method to include a frequency-based ICA stage that removes redundant time shift information. The digits speech recognition results show promising accuracy. Experiments show that the method based on ICA and Geometrical Learning outperforms HMM in a different number of training samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the use of independent component analysis (ICA) for speech feature extraction in digits speech recognition systems. We observe that this may be true for recognition tasks based on Geometrical Learning with little training data. In contrast to image processing, phase information is not essential for digits speech recognition. We therefore propose a new scheme that shows how the phase sensitivity can be removed by using an analytical description of the ICA-adapted basis functions. Furthermore, since the basis functions are not shift invariant, we extend the method to include a frequency-based ICA stage that removes redundant time shift information. The digits speech recognition results show promising accuracy. Experiments show that the method based on ICA and Geometrical Learning outperforms HMM in a different number of training samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tedd, L.A. (2005). 40 years of library and information studies education in Wales. Education for Information, 23(1/2), 1-8.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tedd, L.A. (2006).Use of library and information science journals by Master?s students in their dissertations: experiences at the University of Wales Aberystwyth. Aslib Proceedings: New Information Perspectives, 58(6), 570-581.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article develops the Synchronous Matching Adaptive Resonance Theory (SMART) neural model to explain how the brain may coordinate multiple levels of thalamocortical and corticocortical processing to rapidly learn, and stably remember, important information about a changing world. The model clarifies how bottom-up and top-down processes work together to realize this goal, notably how processes of learning, expectation, attention, resonance, and synchrony are coordinated. The model hereby clarifies, for the first time, how the following levels of brain organization coexist to realize cognitive processing properties that regulate fast learning and stable memory of brain representations: single cell properties, such as spiking dynamics, spike-timing-dependent plasticity (STDP), and acetylcholine modulation; detailed laminar thalamic and cortical circuit designs and their interactions; aggregate cell recordings, such as current-source densities and local field potentials; and single cell and large-scale inter-areal oscillations in the gamma and beta frequency domains. In particular, the model predicts how laminar circuits of multiple cortical areas interact with primary and higher-order specific thalamic nuclei and nonspecific thalamic nuclei to carry out attentive visual learning and information processing. The model simulates how synchronization of neuronal spiking occurs within and across brain regions, and triggers STDP. Matches between bottom-up adaptively filtered input patterns and learned top-down expectations cause gamma oscillations that support attention, resonance, and learning. Mismatches inhibit learning while causing beta oscillations during reset and hypothesis testing operations that are initiated in the deeper cortical layers. The generality of learned recognition codes is controlled by a vigilance process mediated by acetylcholine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How do our brains transform the "blooming buzzing confusion" of daily experience into a coherent sense of self that can learn and selectively attend to important information? How do local signals at multiple processing stages, none of which has a global view of brain dynamics or behavioral outcomes, trigger learning at multiple synaptic sites when appropriate, and prevent learning when inappropriate, to achieve useful behavioral goals in a continually changing world? How does the brain allow synaptic plasticity at a remarkably rapid rate, as anyone who has gone to an exciting movie is readily aware, yet also protect useful memories from catastrophic forgetting? A neural model provides a unified answer by explaining and quantitatively simulating data about single cell biophysics and neurophysiology, laminar neuroanatomy, aggregate cell recordings (current-source densities, local field potentials), large-scale oscillations (beta, gamma), and spike-timing dependent plasticity, and functionally linking them all to cognitive information processing requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The processes by which humans and other primates learn to recognize objects have been the subject of many models. Processes such as learning, categorization, attention, memory search, expectation, and novelty detection work together at different stages to realize object recognition. In this article, Gail Carpenter and Stephen Grossberg describe one such model class (Adaptive Resonance Theory, ART) and discuss how its structure and function might relate to known neurological learning and memory processes, such as how inferotemporal cortex can recognize both specialized and abstract information, and how medial temporal amnesia may be caused by lesions in the hippocampal formation. The model also suggests how hippocampal and inferotemporal processing may be linked during recognition learning.