965 resultados para Leukemia Inhibitory Factor
Resumo:
Leukaemia inhibitory factor (LIF) is a cytokine that is active on a wide variety of cells. Multiple LIF transcripts have been described. The transcripts LIF-D and LIF-M encode different signal peptides, which in mouse have been associated with differential localisation of the mature protein. LIF-D is associated with a freely diffusible protein, whereas the LIF-M is associated with the extracellular matrix. The polarity of LIF secretion has yet to be described and could illuminate the mechanisms of LIF localisation. Here the polarised endogenous secretion of human LIF and IL-6 in Caco-2 cells was characterised under normal culture conditions and following induction with IL-1b. Whether the apical or basolateral membrane was stimulated influenced the pattern of secretion (LIF: Unstimulated, 59% basolateral. Dual stimulation, 68% basolateral. Basolateral stimulation, 79% basolateral. Apical stimulation, 53% basolateral). IL-6 displayed a similar dependence on the site of stimulation but was predominantly secreted at the membrane that was stimulated. To determine the effect of the alternate signal peptides on the polarity of LIF secretion, LIF was epitope tagged with FLAG. Epitope-tagging with FLAG was used to separate endogenous from exogenous protein expression. However, despite the normal biological activity of LIF-FLAG and detection of the FLAG in a western blot, detection of the LIF-FLAG under non-reducing conditions was not observed, and therefore it was unsuitable for secretion studies. Untagged LIF was expressed exogenously in Madin-Darby canine kidney (MDCK) cells under the control of a tetracycline response promoter that allowed a variety of LIF expression levels to be tested. Exogenous murine LIF was secreted predominantly from the apical (60%) membrane of MDCK cells irrespective of the signal peptide expressed.
Resumo:
5. Acknowledgements This research was supported by grants from the National Natural Science Foundation of China (Nos. 31172438 and U1205123), the Natural Science Foundation of Fujian Province (No. 2012J06008 and 201311180002) and the projects-sponsored by SRF. TW received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.
Resumo:
Background: Sertoli cells play a pivotal role in creating microenvironments essential for spermatogonial stem cells (SSCs) self-renewal and commitment to differentiation. Maintenance of SSCs and or induction of in vitro spermiogenesis may provide a therapeutic strategy to treat male infertility. Objective: This study investigated the role of luekemia inhibitory factor (LIF) on the propagation of SSCs and both functions of Sertoli cells on the proliferation and differentiation of these cells. Materials and Methods: SSCs were sorted from the testes of adult male mice by magnetic activated cell sorting and thymus cell antigen 1 antibody. On the other hand, isolated Sertoli cells were enriched using lectin coated plates. SSCs were cultured on Sertoli cells for 7 days in the absence or presence of LIF. The effects of these conditions were evaluated by microscopy and expression of meiotic and post meiotic transcripts by reverse transcriptase polymerase chain reaction. Results: Our data showed that SSCs co-cultured with Sertoli cells in the presence of LIF formed colonies on top of the Sertoli cells. These colonies had alkaline phosphatesase activity and expressed SSCs specific genes. SSCs were enjoyed limited development after the mere removal of LIF, and exhibiting expression of meiotic and postmeiotic transcript and loss of SSCs specific gene expression (p< 0.05). Conclusion: Our findings represent co-culture of SSCs with Sertoli cells provides conditions that may allow efficient proliferation and differentiation of SSCs for male infertility treatment.
The expression and regulation of metalloproteinases during normal and malignant trophoblast invasion
Resumo:
In mammals including humans, failure in blastocyst hatching and implantation leads to early embryonic loss and infertility. Prior to implantation, the blastocyst must hatch out of its acellular glycoprotein coat, the zona pellucida (ZP). The phenomenon of blastocyst hatching is believed to be regulated by (i) dynamic cellular components such as actin-based trophectodermal projections (TEPs), and (ii) a variety of autocrine and paracrine molecules such as growth factors, cytokines and proteases. The spatio-temporal regulation of zona lysis by blastocyst-derived cellular and molecular signaling factors is being keenly investigated. Our studies show that hamster blastocyst hatching is acelerated by growth factors such as heparin binding-epidermal growth factor and leukemia inhibitory factor and that embryo-derived, cysteine proteases including cathepsins are responsible for blastocyst hatching. Additionally, we believe that cyclooxygenase-generated prostaglandins, estradiol-17 beta mediated estrogen receptor-alpha signaling and possibly NF kappa B could be involved in peri-hatching development. Moreover, we show that TEPs are intimately involved with lysing ZP and that the TEPs potentially enrich and harbor hatching-enabling factors. These observations provide new insights into our understanding of the key cellular and molecular regulators involved in the phenomenon of mammalian blastocyst hatching, which is essential for the establishment of early pregnancy.
Resumo:
In the present study, five homologous feeder cell lines were developed for the culture and maintenance of rhesus monkey embryonic stem cells (rESCs). Monkey ear skin fibroblasts (MESFs), monkey oviductal fibroblasts (MOFs), monkey follicular granulosa fibroblast-like (MFG) cells, monkey follicular granulosa epithelium-like (MFGE) cells, and clonally derived fibroblasts from MESF (CMESFs) were established and compared with the ability of mouse embryonic fibroblasts (MEFs) to support rESC growth. MESF, MOF, MFG, and CMESF cells, but not MFGE cells, were as good as or better than MEFs in supporting undifferentiated growth while maintaining the differentiation potential of the rESCs. In an effort to understand the unique properties of supportive feeder cells, expression levels for a number of candidate genes were examined. MOF, MESF, and MEF cells highly expressed leukemia inhibitory factor, ciliary neurotrophic factor, basic fibroblast growth factor, stem cell factor, transforming growth factor PI, bone morphogenetic protein 4, and WNT3A, whereas WNT2, WNT4, and WNT5A were downregulated, compared with MFGE cells. Additionally, all monkey feeder cell lines expressed Dkk1 and LRP6, antagonists of the WNT signaling pathway, but not WNT1, WNT8B, or Dkk2. rESCs grown on homologous feeders maintained normal karyotypes, displayed the characteristics of ESCs, including morphology, alkaline phosphatase, Oct4, the cell surface markers stage-specific embryonic antigen (SSEA)-3, SSEA-4, tumor-related antigen (TRA)-1-60, and TRA-1-81, and formed cystic embryoid bodies in vitro that included differentiated cells representing the three major germ layers. These results indicate that the four homologous feeder cell lines can be used to support the undifferentiated growth and maintenance of pluripotency in rESCs.
Resumo:
Histone deacetylases (HDACs) have a central role in the regulation of gene expression. Here we investigated whether HDAC7 has an impact on embryonic stem (ES) cell differentiation into smooth muscle cells (SMCs). ES cells were seeded on collagen-IV-coated flasks and cultured in the absence of leukemia inhibitory factor in differentiation medium to induce SMC differentiation. Western blots and double-immunofluorescence staining demonstrated that HDAC7 has a parallel expression pattern with SMC marker genes. In ex vivo culture of embryonic cells from SM22-LacZ transgenic mice, overexpression of HDAC7 significantly increased beta-galactosidase-positive cell numbers and enzyme activity, indicating its crucial role in SMC differentiation during embryonic development. We found that HDAC7 undergoes alternative splicing during ES cell differentiation. Platelet-derived growth factor enhanced ES cell differentiation into SMCs through upregulation of HDAC7 splicing. Further experiments revealed that HDAC7 splicing induced SMC differentiation through modulation of the SRF-myocardin complex. These findings suggest that HDAC7 splicing is important for SMC differentiation and vessel formation in embryonic development.
Resumo:
Fetal ovarian development and primordial follicle formation are imperative for adult fertility in the female. Data suggest the interleukin (IL)6-type cytokines, leukaemia inhibitory factor (LIF), IL6, oncostatin M (OSM) and ciliary neurotrophic factor (CNTF), are able to regulate the survival, proliferation and differentiation of fetal murine germ cells (GCs) in vivo and in vitro. We postulated that these factors may play a similar role during early human GC development and primordial follicle formation. To test this hypothesis, we have investigated the expression and regulation of IL6-type cytokines, using quantitative reverse transcription polymerase chain reaction and immunohistochemistry. Expression of transcripts encoding OSM increased significantly across the gestational range examined (8-20 weeks), while expression of IL6 increased specifically between the first (8-11 weeks) and early second (12-16 weeks) trimesters, co-incident with the initiation of meiosis. LIF and CNTF expression remained unchanged. Expression of the genes encoding the LIF and IL6 receptors, and their common signalling subunit gp130, was also found to be developmentally regulated, with expression increasing significantly with increasing gestation. LIF receptor and gp130 proteins localized exclusively to GCs, including oocytes in primordial follicles, indicating this cell type to be the sole target of IL6-type cytokine signalling in the human fetal ovary. These data establish that IL6-type cytokines and their receptors are expressed in the human fetal ovary and may directly influence GC development at multiple stages of maturation.
Resumo:
Background: Embryonic stem cells are cells derived from early-stage embryos that are characterized by pluripotency and self-renewal capacity. The in vitro cultured murine embryonic stem cells can indefinitely propagate in an undifferentiated state in the presence of leukemia inhibitory factor (LIF). However, when stimulated, these cells can differentiate into cell lines derived from all three embryonic germ layers. The trichostatin A (TSA) is an epigenetic modifier agent and several studies have used the TSA to stimulate cellular differentiation. However, most of these studies only assessed one TSA concentration. Therefore, this study aimed to evaluate the effects of different TSA concentrations on histone hyperacetylation during in vitro cell differentiation of murine pluripotent embryonic stem cells, cultured with or without LIF, in the quest of to standardize their application on early cultures of embryonic stem cells.Materials, Methods & Results: Undifferentiated murine embryonic stem cells were plated in the presence of different TSA concentrations (0 nM, 15 nm, 50 nM and 100 nM) in the presence or absence of LIF. Thus, the treatments were evaluated in undifferentiated embryonic stem cells cultured in the presence of LIF (Control group: 0 nM LIF(+); Group 15 nM LIF+; Group 50 nM LIF+ and Group 100 nM LIF+), and in embryonic stem cells cultured in the absence of LIF (Control group: 0 nM LIF; Group 15 nM LIF(-); Group 50 nM LIF(-) and Group 100 nM LIF-). Treatment with TSA was performed for 24 h. After that the medium was replaced with fresh medium without TSA. Samples were collected at 0, 12, 24, 36 and 48 h after the beginning of the experiment. Three replicates were performed in each experimental group. The relative amount of Histone H3 lysine 9 acetylation was analyzed in all groups, as well as the cell proliferation in the embryonic stem cells cultured in the presence of LIF. In the control group (0 nM), the absence of LIF resulted in higher levels (P < 0.05) of H3lys9ac compared to the cultures supplemented with LIF. In the embryonic stem cells cultured in the presence of LIF, the 50 nM and 100 nM treatments resulted in higher levels (P < 0.05) of H3lys9ac when compared with 0 nM and 15 nM treatments. Evaluating the Hoechst area in the 0 nM group, it was observed that the number of cells increased (P < 0.05) according to the time of culture. Treatment with 15 nM also reflected a similar distribution, but the Hoechst area in 15 nM group was lower (P < 0.05) at 24 and 48h when compared to the observed in the control group. In the 100 nM treatment, was observed that the area of Hoechst was lower (P < 0.05) to that obtained in the control group at 12, 24 and 48h. In addition, it was observed that treatment with TSA induces greater cellular differentiation when compared to control groups in stem cells cultured in the presence of LIF as well as in the absence of LIF.Discussion: In the present study it was observed that TSA treatment increased the levels of histone acetylation in murine embryonic stem cells at a 50 nM concentration, making it possible to reduce the concentration recommended in the literature (100 nM). In addtion, it was concluded that the lower TSA concentrations utilized (15 nm and 50 nM) was less harmful to cellular proliferation than the 100 nM TSA concentration.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Chronic inflammatory processes close to bone often lead to loss of bone in diseases such as rheumatoid arthritis, periodontitis, loosened joint prosthesis and tooth implants. This is mainly due to local formation of bone resorbing osteoclasts which degrade bone without any subsequent coupling to new bone formation. Crucial for osteoclastogenesis is stimulation of mononuclear osteoclast progenitors by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) which induces their differentiation along the osteoclastic lineage and the fusion to mature, multinucleated osteoclasts. M-CSF and RANKL are produced by osteoblasts/ osteocytes and by synovial and periodontal fibroblasts and the expression is regulated by pro- and anti-inflammatory cytokines. These cytokines also regulate osteoclastic differentiation by direct effects on the progenitor cells. In the present overview, we introduce the basic concepts of osteoclast progenitor cell differentiation and summarize the current knowledge on cytokines stimulating and inhibiting osteoclastogenesis by direct and indirect mechanisms. © Informa Healthcare USA, Inc.
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Mesenchymal stem cells (MSCs) are characterized as multipotent stromal cells with the capacity for both self-renewal and differentiation into mesodermal cell lineages. MSCs also have a fibroblast-like phenotype and can be isolated from several tissues. In recent years, researchers have found that MSCs secrete several soluble factors that exert immunosuppressive effects by modulating both innate (macrophages, dendritic and NK cells) and adaptive (B cells and CD4+ and CD8+ T cells) immune responses. This review summarizes the principal trophic factors that are related to immune regulation and secreted by MSCs under both autoimmune and inflammatory conditions. The understanding of mechanisms that regulate immunity in MSCs field is important for their future use as a novel cellular-based immunotherapy with clinical applications in several diseases.
Resumo:
The aim of this study was to identify immunoreactive neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) neurons in the autonomic and sensory ganglia, specifically neurons that innervate the rat temporomandibular joint (TMJ). A possible variation between the percentages of these neurons in acute and chronic phases of carrageenan-induced arthritis was examined. Retrograde neuronal tracing was combined with indirect immunofluorescence to identify NPY-immuno-reactive (NPY-IR) and CGRP-immunoreactive (CGRP-IR) neurons that send nerve fibers to the normal and arthritic temporomandibular joint. In normal joints, NPY-IR neurons constitute 78 +/- 3%, 77 +/- 6% and 10 +/- 4% of double-labeled nucleated neuronal profile originated from the superior cervical, stellate and otic ganglia, respectively. These percentages in the sympathetic ganglia were significantly decreased in acute (58 +/- 2% for superior cervical ganglion and 58 +/- 8% for stellate ganglion) and chronic (60 +/- 2% for superior cervical ganglion and 59 +/- 15% for stellate ganglion) phases of arthritis, while in the otic ganglion these percentages were significantly increased to 19 +/- 5% and 13 +/- 3%, respectively. In the trigeminal ganglion, CGRP-IR neurons innervating the joint significantly increased from 31 +/- 3% in normal animals to 54 +/- 2% and 49 +/- 3% in the acute and chronic phases of arthritis, respectively. It can be concluded that NPY neurons that send nerve fibers to the rat temporomandibular joint are located mainly in the superior cervical, stellate and otic ganglia. Acute and chronic phases of carrageenan-induced arthritis lead to an increase in the percentage of NPY-IR parasympathetic and CGRP-IR sensory neurons and to a decrease in the percentage of NPY-IR sympathetic neurons related to TMJ innervation.