901 resultados para Lean maintenance
Resumo:
It is questionable whether activities like construction, including maintenance and repair, can be considered a single entity or industry - on the basis that different sectors of construction/maintenance use fundamentally distinct resource and skill bases. This creates a number of issues including the development of competition and reform policy. de Valance deployed the Structure-Conduct-Performance model (SCP) to delineate sectors of new/installation construction activity and, in doing so, proposes that there exists multiple market structures in a given project. The purpose of this paper is to apply the SCP model to a different sector of construction activity, that is air conditioning maintenance and test de Valance's proposition concerning the existence of multiple market structures in a supply chain but this time to a built facility. The research method combines secondary data concerning the "Structure" component of the SCP model and primary data with regard to the "Conduct" and "Performance" parts of the SCP model. The results provide further support (beyond de Valance's analysis of new/installation activity) that a sector system approach using the SCP model is a more effective way to analyse market structures in construction activity. This paper also supports de Valance's proposition concerning the existence of multiple market structures in a supply chain to a project/facility.
Using Agents for Mining Maintenance Data while interacting in 3D Objectoriented Virtual Environments
Resumo:
This report demonstrates the development of: (a) object-oriented representation to provide 3D interactive environment using data provided by Woods Bagot; (b) establishing basis of agent technology for mining building maintenance data, and (C) 3D interaction in virtual environments using object-oriented representation. Applying data mining over industry maintenance database has been demonstrated in the previous report.
Resumo:
This report demonstrates the development of: • Development of software agents for data mining • Link data mining to building model in virtual environments • Link knowledge development with building model in virtual environments • Demonstration of software agents for data mining • Populate with maintenance data
Resumo:
This report presents the demonstration of software agents prototype system for improving maintenance management [AIMM] including: • Developing and implementing a user focused approach for mining the maintenance data of buildings. This report presents the demonstration of software agents prototype system for improving maintenance management [AIMM] including: • Developing and implementing a user focused approach for mining the maintenance data of buildings. • Refining the development of a multi agent system for data mining in virtual environments (Active Worlds) by developing and implementing a filtering agent on the results obtained from applying data mining techniques on the maintenance data. • Integrating the filtering agent within the multi agents system in an interactive networked multi-user 3D virtual environment. • Populating maintenance data and discovering new rules of knowledge.
Resumo:
In the previous phase of this project, 2002-059-B Case-Based Reasoning in Construction and Infrastructure Projects, demonstration software was developed using a case-base reasoning engine to access a number of sources of information on lifetime of metallic building components. One source of information was data from the Queensland Department of Public Housing relating to maintenance operations over a number of years. Maintenance information is seen as being a particularly useful source of data about service life of building components as it relates to actual performance of materials in the working environment. If a building is constructed in 1984 and the maintenance records indicate that the guttering was replaced in 2006, then the service life of the gutters was 22 years in that environment. This phase of the project aims to look more deeply at the Department of Housing data, as an example of maintenance records, and formulate methods for using this data to inform the knowledge of service lifetimes.
Final : report assessing risk and variation in maintenance and rehabilitation costs for road network
Resumo:
This report presents the results of research projects conducted by The Australian Cooperative Research Centre for Construction Innovation, Queensland University of Technology, RMIT University, Queensland Government Department of Main Roads and Queensland Department of Public Works. The research projects aimed at developing a methodology for assessing variation and risk in investment in road network, including the application of the method in assessing road network performance and maintenance and rehabilitation costs for short- and long-term future investment.
Resumo:
Realistic estimates of short- and long-term (strategic) budgets for maintenance and rehabilitation of road assessment management should consider the stochastic characteristics of asset conditions of the road networks so that the overall variability of road asset data conditions is taken into account. The probability theory has been used for assessing life-cycle costs for bridge infrastructures by Kong and Frangopol (2003), Zayed et.al. (2002), Kong and Frangopol (2003), Liu and Frangopol (2004), Noortwijk and Frangopol (2004), Novick (1993). Salem 2003 cited the importance of the collection and analysis of existing data on total costs for all life-cycle phases of existing infrastructure, including bridges, road etc., and the use of realistic methods for calculating the probable useful life of these infrastructures (Salem et. al. 2003). Zayed et. al. (2002) reported conflicting results in life-cycle cost analysis using deterministic and stochastic methods. Frangopol et. al. 2001 suggested that additional research was required to develop better life-cycle models and tools to quantify risks, and benefits associated with infrastructures. It is evident from the review of the literature that there is very limited information on the methodology that uses the stochastic characteristics of asset condition data for assessing budgets/costs for road maintenance and rehabilitation (Abaza 2002, Salem et. al. 2003, Zhao, et. al. 2004). Due to this limited information in the research literature, this report will describe and summarise the methodologies presented by each publication and also suggest a methodology for the current research project funded under the Cooperative Research Centre for Construction Innovation CRC CI project no 2003-029-C.
Resumo:
In the previous research CRC CI 2001-010-C “Investment Decision Framework for Infrastructure Asset Management”, a method for assessing variation in cost estimates for road maintenance and rehabilitation was developed. The variability of pavement strength collected from a 92km national highway was used in the analysis to demonstrate the concept. Further analysis was conducted to identify critical input parameters that significantly affect the prediction of road deterioration. In addition to pavement strength, rut depth, annual traffic loading and initial roughness were found to be critical input parameters for road deterioration. This report presents a method developed to incorporate other critical parameters in the analysis, such as unit costs, which are suspected to contribute to a certain degree to cost estimate variation. Thus, the variability of unit costs will be incorporated in this analysis. Bruce Highway located in the tropical east coast of Queensland has been identified to be the network for the analysis. This report presents a step by step methodology for assessing variation in road maintenance and rehabilitation cost estimates.
Resumo:
Reliable budget/cost estimates for road maintenance and rehabilitation are subjected to uncertainties and variability in road asset condition and characteristics of road users. The CRC CI research project 2003-029-C ‘Maintenance Cost Prediction for Road’ developed a method for assessing variation and reliability in budget/cost estimates for road maintenance and rehabilitation. The method is based on probability-based reliable theory and statistical method. The next stage of the current project is to apply the developed method to predict maintenance/rehabilitation budgets/costs of large networks for strategic investment. The first task is to assess the variability of road data. This report presents initial results of the analysis in assessing the variability of road data. A case study of the analysis for dry non reactive soil is presented to demonstrate the concept in analysing the variability of road data for large road networks. In assessing the variability of road data, large road networks were categorised into categories with common characteristics according to soil and climatic conditions, pavement conditions, pavement types, surface types and annual average daily traffic. The probability distributions, statistical means, and standard deviation values of asset conditions and annual average daily traffic for each type were quantified. The probability distributions and the statistical information obtained in this analysis will be used to asset the variation and reliability in budget/cost estimates in later stage. Generally, we usually used mean values of asset data of each category as input values for investment analysis. The variability of asset data in each category is not taken into account. This analysis method demonstrated that it can be used for practical application taking into account the variability of road data in analysing large road networks for maintenance/rehabilitation investment analysis.
Resumo:
An estimation of costs for maintenance and rehabilitation is subject to variation due to the uncertainties of input parameters. This paper presents the results of an analysis to identify input parameters that affect the prediction of variation in road deterioration. Road data obtained from 1688 km of a national highway located in the tropical northeast of Queensland in Australia were used in the analysis. Data were analysed using a probability-based method, the Monte Carlo simulation technique and HDM-4’s roughness prediction model. The results of the analysis indicated that among the input parameters the variability of pavement strength, rut depth, annual equivalent axle load and initial roughness affected the variability of the predicted roughness. The second part of the paper presents an analysis to assess the variation in cost estimates due to the variability of the overall identified critical input parameters.
Resumo:
With an increase in growing number of aging public building infrastructure globally, there is an opportunity for an efficient life care management rather then mere demolition and rebuild. By carefully implementing appropriate structural engineering practices with facility management, the whole of life cycle costs for public building assets can be optimised and public money can be saved and better utilised elsewhere. A need of decision support tool/methodology which can assist asset manager make better decision among demolish, refurbish, do nothing or rebuilt option for any typical building under consideration is growing in order to optimise maintenance funds. The paper is part of research project focusing on development of such methodology known as residual service life prediction. The paper is mainly focusing on following three major aspects of public building infrastructure; first, issues and challenges in optimisation of maintenance funds, second, residual service life prediction methodology and issues and challenges in the development of such methodology. The paper concludes with the authors’ observations and further research potentials
Resumo:
Statistics indicate that the percentage of fatal industrial accidents arising from repair, maintenance, minor alteration and addition (RMAA) works in Hong Kong was disturbingly high and was over 56% in 2006. This paper provides an initial report of a research project funded by the Research Grants Council (RGC) of the HKSAR to address this safety issue. The aim of this study is to scrutinize the causal relationship between safety climate and safety performance in the RMAA sector. It aims to evaluate the safety climate in the RMAA sector; examine its impacts on safety performance, and recommend measures to improve safety performance in the RMAA sector. This paper firstly reports on the statistics of construction accidents arising from RMAA works. Qualitative and quantitative research methods applied in conducting the research are dis-cussed. The study will critically review these related problems and provide recommendations for improving safety performance in the RMAA sector.
Resumo:
Technological and societal change, along with organisational and market change (driven by contracting-out and privatisation), are “creating a new generation of infrastructures” [1]. While inter-organisational contractual arrangements can improve maintenance efficiency through consistent and repeatable patterns of action - unanticipated difficulties in implementation can reduce the performance of these arrangements. When faced with unsatisfactory performance of contracting-out arrangements, government organisations may choose to adapt and change these arrangements over time, with the aim of improving performance. This paper enhances our understanding of ‘next generation infrastructures’ by examining adaptation of the organisational arrangements for the maintenance of these assets, in a case study spanning 20 years.