902 resultados para Leak detection systems


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The employment of nonlinear analysis techniques for automatic voice pathology detection systems has gained popularity due to the ability of such techniques for dealing with the underlying nonlinear phenomena. On this respect, characterization using nonlinear analysis typically employs the classical Correlation Dimension and the largest Lyapunov Exponent, as well as some regularity quantifiers computing the system predictability. Mostly, regularity features highly depend on a correct choosing of some parameters. One of those, the delay time �, is usually fixed to be 1. Nonetheless, it has been stated that a unity � can not avoid linear correlation of the time series and hence, may not correctly capture system nonlinearities. Therefore, present work studies the influence of the � parameter on the estimation of regularity features. Three � estimations are considered: the baseline value 1; a � based on the Average Automutual Information criterion; and � chosen from the embedding window. Testing results obtained for pathological voice suggest that an improved accuracy might be obtained by using a � value different from 1, as it accounts for the underlying nonlinearities of the voice signal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of automatic pathological voice detection systems is to serve as tools, to medical specialists, for a more objective, less invasive and improved diagnosis of diseases. In this respect, the gold standard for those system include the usage of a optimized representation of the spectral envelope, either based on cepstral coefficients from the mel-scaled Fourier spectral envelope (Mel-Frequency Cepstral Coefficients) or from an all-pole estimation (Linear Prediction Coding Cepstral Coefficients) forcharacterization, and Gaussian Mixture Models for posterior classification. However, the study of recently proposed GMM-based classifiers as well as Nuisance mitigation techniques, such as those employed in speaker recognition, has not been widely considered inpathology detection labours. The present work aims at testing whether or not the employment of such speaker recognition tools might contribute to improve system performance in pathology detection systems, specifically in the automatic detection of Obstructive Sleep Apnea. The testing procedure employs an Obstructive Sleep Apnea database, in conjunction with GMM-based classifiers looking for a better performance. The results show that an improved performance might be obtained by using such approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Identifying water wastage in forms of leaks in a water distribution network of any city becomes essential as droughts are presenting serious threats to few major cities. In this paper, we propose a deployment of sensor network for monitoring water flow in any water distribution network. We cover the issues related with designing such a dedicated sensor network by considering types of sensors required, sensors' functionality, data collection, and providing computation serving as leak detection mechanism. The main focus of this paper is on appropriate network segmentation that provides the base for hierarchical approach to pipes' failure detection. We show a method for sensors allocation to the network in order to facilitate effective pipes monitoring. In general, the identified computational problem belongs to hard problems. The paper shows a heuristic method to build effective hierarchy of the network segmentation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Different types of ontologies and knowledge or metaknowledge connected to them are considered and analyzed aiming at realization in contemporary information security systems (ISS) and especially the case of intrusion detection systems (IDS) or intrusion prevention systems (IPS). Human-centered methods INCONSISTENCY, FUNNEL, CALEIDOSCOPE and CROSSWORD are algorithmic or data-driven methods based on ontologies. All of them interact on a competitive principle ‘survival of the fittest’. They are controlled by a Synthetic MetaMethod SMM. It is shown that the data analysis frequently needs an act of creation especially if it is applied to knowledge-poor environments. It is shown that human-centered methods are very suitable for resolutions in case, and often they are based on the usage of dynamic ontologies

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The growing need for fast sampling of explosives in high throughput areas has increased the demand for improved technology for the trace detection of illicit compounds. Detection of the volatiles associated with the presence of the illicit compounds offer a different approach for sensitive trace detection of these compounds without increasing the false positive alarm rate. This study evaluated the performance of non-contact sampling and detection systems using statistical analysis through the construction of Receiver Operating Characteristic (ROC) curves in real-world scenarios for the detection of volatiles in the headspace of smokeless powder, used as the model system for generalizing explosives detection. A novel sorbent coated disk coined planar solid phase microextraction (PSPME) was previously used for rapid, non-contact sampling of the headspace containers. The limits of detection for the PSPME coupled to IMS detection was determined to be 0.5-24 ng for vapor sampling of volatile chemical compounds associated with illicit compounds and demonstrated an extraction efficiency of three times greater than other commercially available substrates, retaining >50% of the analyte after 30 minutes sampling of an analyte spike in comparison to a non-detect for the unmodified filters. Both static and dynamic PSPME sampling was used coupled with two ion mobility spectrometer (IMS) detection systems in which 10-500 mg quantities of smokeless powders were detected within 5-10 minutes of static sampling and 1 minute of dynamic sampling time in 1-45 L closed systems, resulting in faster sampling and analysis times in comparison to conventional solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis. Similar real-world scenarios were sampled in low and high clutter environments with zero false positive rates. Excellent PSPME-IMS detection of the volatile analytes were visualized from the ROC curves, resulting with areas under the curves (AUC) of 0.85-1.0 and 0.81-1.0 for portable and bench-top IMS systems, respectively. Construction of ROC curves were also developed for SPME-GC-MS resulting with AUC of 0.95-1.0, comparable with PSPME-IMS detection. The PSPME-IMS technique provides less false positive results for non-contact vapor sampling, cutting the cost and providing an effective sampling and detection needed in high-throughput scenarios, resulting in similar performance in comparison to well-established techniques with the added advantage of fast detection in the field.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The sudden hydrocarbon influx from the formation into the wellbore poses a serious risk to the safety of the well. This sudden influx is termed a kick, which, if not controlled, may lead to a blowout. Therefore, early detection of the kick is crucial to minimize the possibility of a blowout occurrence. There is a high probability of delay in kick detection, apart from other issues when using a kick detection system that is exclusively based on surface monitoring. Down-hole monitoring techniques have a potential to detect a kick at its early stage. Down-hole monitoring could be particularly beneficial when the influx occurs as a result of a lost circulation scenario. In a lost circulation scenario, when the down-hole pressure becomes lower than the formation pore pressure, the formation fluid may starts to enter the wellbore. The lost volume of the drilling fluid is compensated by the formation fluid flowing into the well bore, making it difficult to identify the kick based on pit (mud tank) volume observations at the surface. This experimental study investigates the occurrence of a kick based on relative changes in the mass flow rate, pressure, density, and the conductivity of the fluid in the down-hole. Moreover, the parameters that are most sensitive to formation fluid are identified and a methodology to detect a kick without false alarms is reported. Pressure transmitter, the Coriolis flow and density meter, and the conductivity sensor are employed to observe the deteriorating well conditions in the down-hole. These observations are used to assess the occurrence of a kick and associated blowout risk. Monitoring of multiple down-hole parameters has a potential to improve the accuracy of interpretation related to kick occurrence, reduces the number of false alarms, and provides a broad picture of down-hole conditions. The down-hole monitoring techniques have a potential to reduce the kick detection period. A down-hole assembly of the laboratory scale drilling rig model and kick injection setup were designed, measuring instruments were acquired, a frame was fabricated, and the experimental set-up was assembled and tested. This set-up has the necessary features to evaluate kick events while implementing down-hole monitoring techniques. Various kick events are simulated on the drilling rig model. During the first set of experiments compressed air (which represents the formation fluid) is injected with constant pressure margin. In the second set of experiments the compressed air is injected with another pressure margin. The experiments are repeated with another pump (flow) rate as well. This thesis consists of three main parts. The first part gives the general introduction, motivation, outline of the thesis, and a brief description of influx: its causes, various leading and lagging indicators, and description of the several kick detection systems that are in practice in the industry. The second part describes the design and construction of the laboratory scale down-hole assembly of the drilling rig and kick injection setup, which is used to implement the proposed methodology for early kick detection. The third part discusses the experimental work, describes the methodology for early kick detection, and presents experimental results that show how different influx events affect the mass flow rate, pressure, conductivity, and density of the fluid in the down-hole, and the discussion of the results. The last chapter contains summary of the study and future research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To maintain the pace of development set by Moore's law, production processes in semiconductor manufacturing are becoming more and more complex. The development of efficient and interpretable anomaly detection systems is fundamental to keeping production costs low. As the dimension of process monitoring data can become extremely high anomaly detection systems are impacted by the curse of dimensionality, hence dimensionality reduction plays an important role. Classical dimensionality reduction approaches, such as Principal Component Analysis, generally involve transformations that seek to maximize the explained variance. In datasets with several clusters of correlated variables the contributions of isolated variables to explained variance may be insignificant, with the result that they may not be included in the reduced data representation. It is then not possible to detect an anomaly if it is only reflected in such isolated variables. In this paper we present a new dimensionality reduction technique that takes account of such isolated variables and demonstrate how it can be used to build an interpretable and robust anomaly detection system for Optical Emission Spectroscopy data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[EN]Automatic detection systems do not perform as well as human observers, even on simple detection tasks. A potential solution to this problem is training vision systems on appropriate regions of interests (ROIs), in contrast to training on predefined and arbitrarily selected regions. Here we focus on detecting pedestrians in static scenes. Our aim is to answer the following question: Can automatic vision systems for pedestrian detection be improved by training them on perceptually-defined ROIs?

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper provides an overview of IDS types and how they work as well as configuration considerations and issues that affect them. Advanced methods of increasing the performance of an IDS are explored such as specification based IDS for protecting Supervisory Control And Data Acquisition (SCADA) and Cloud networks. Also by providing a review of varied studies ranging from issues in configuration and specific problems to custom techniques and cutting edge studies a reference can be provided to others interested in learning about and developing IDS solutions. Intrusion Detection is an area of much required study to provide solutions to satisfy evolving services and networks and systems that support them. This paper aims to be a reference for IDS technologies other researchers and developers interested in the field of intrusion detection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The analysis of system calls is one method employed by anomaly detection systems to recognise malicious code execution. Similarities can be drawn between this process and the behaviour of certain cells belonging to the human immune system, and can be applied to construct an artificial immune system. A recently developed hypothesis in immunology, the Danger Theory, states that our immune system responds to the presence of intruders through sensing molecules belonging to those invaders, plus signals generated by the host indicating danger and damage. We propose the incorporation of this concept into a responsive intrusion detection system, where behavioural information of the system and running processes is combined with information regarding individual system calls.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Network Intrusion Detection Systems (NIDS) monitor a net- work with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDS’s rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to an intrusion detection problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Network Intrusion Detection Systems (NIDS) are computer systems which monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDSs rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to the IDS problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The analysis of system calls is one method employed by anomaly detection systems to recognise malicious code execution. Similarities can be drawn between this process and the behaviour of certain cells belonging to the human immune system, and can be applied to construct an artificial immune system. A recently developed hypothesis in immunology, the Danger Theory, states that our immune system responds to the presence of intruders through sensing molecules belonging to those invaders, plus signals generated by the host indicating danger and damage. We propose the incorporation of this concept into a responsive intrusion detection system, where behavioural information of the system and running processes is combined with information regarding individual system calls.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Network Intrusion Detection Systems (NIDS) are computer systems which monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDSs rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to the IDS problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Engine developers are putting more and more emphasis on the research of maximum thermal and mechanical efficiency in the recent years. Research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting exhaust emissions limits. These new technologies require more complex engine control units. The sound emitted from a mechanical system encloses many information related to its operating condition and it can be used for control and diagnostic purposes. The thesis shows how the functions carried out from different and specific sensors usually present on-board, can be executed, at the same time, using only one multifunction sensor based on low-cost microphone technology. A theoretical background about sound and signal processing is provided in chapter 1. In modern turbocharged downsized GDI engines, the achievement of maximum thermal efficiency is precluded by the occurrence of knock. Knock emits an unmistakable sound perceived by the human ear like a clink. In chapter 2, the possibility of using this characteristic sound for knock control propose, starting from first experimental assessment tests, to the implementation in a real, production-type engine control unit will be shown. Chapter 3 focus is on misfire detection. Putting emphasis on the low frequency domain of the engine sound spectrum, features related to each combustion cycle of each cylinder can be identified and isolated. An innovative approach to misfire detection, which presents the advantage of not being affected by the road and driveline conditions is introduced. A preliminary study of air path leak detection techniques based on acoustic emissions analysis has been developed, and the first experimental results are shown in chapter 4. Finally, in chapter 5, an innovative detection methodology, based on engine vibration analysis, that can provide useful information about combustion phase is reported.