971 resultados para Leaf shelter
Resumo:
Specific leaf nitrogen (SLN, g/m(2)) is known to affect radiation use efficiency (RUE, g/MJ) in different crops, However, this association and importance have not been well established over a range of different nitrogen regimes for held-grown sunflower (Helianthus annuus L.). An experiment was conducted to investigate different combinations and rates of applied nitrogen on SLN, RUE, and growth of sunflower, A fully irrigated crop was sown on an alluvial-prairie soil (Fluventic Haplustoll) and treated with five combinations of applied nitrogen, Greater nitrogen increased biomass, grain number, and yield, but did not affect harvest index energy-corrected for oil (0.4) or canopy extinction coefficient (0.88), Decreases in biomass accumulation under low nitrogen treatments were associated,vith reductions in leaf area index (LAI) and light interception, When SLN and RUE were examined together, both were less in the anthesis to physiological maturity period, but relatively stable between bud visible and anthesis, However, the effects of canopy SLN on RUE were confounded by high SLN in the top of the canopy and the crop maintaining SLN by reducing LAI, Measurements of leaf CO2 assimilation and theoretical analyses of RUE supported that RUE was related to SLN, The major effect of nitrogen on early growth of sunflower was mediated by leaf area and the distribution of SLN in the canopy rather than direct effects of canopy SLN on RUE alone. Greater responses of RUE to SLN are more evident later in growth, and may be related to the demand of nitrogen by the grain.
Resumo:
Systems approaches can help to evaluate and improve the agronomic and economic viability of nitrogen application in the frequently water-limited environments. This requires a sound understanding of crop physiological processes and well tested simulation models. Thus, this experiment on spring wheat aimed to better quantify water x nitrogen effects on wheat by deriving some key crop physiological parameters that have proven useful in simulating crop growth. For spring wheat grown in Northern Australia under four levels of nitrogen (0 to 360 kg N ha(-1)) and either entirely on stored soil moisture or under full irrigation, kernel yields ranged from 343 to 719 g m(-2). Yield increases were strongly associated with increases in kernel number (9150-19950 kernels m(-2)), indicating the sensitivity of this parameter to water and N availability. Total water extraction under a rain shelter was 240 mm with a maximum extraction depth of 1.5 m. A substantial amount of mineral nitrogen available deep in the profile (below 0.9 m) was taken up by the crop. This was the source of nitrogen uptake observed after anthesis. Under dry conditions this late uptake accounted for approximately 50% of total nitrogen uptake and resulted in high (>2%) kernel nitrogen percentages even when no nitrogen was applied,Anthesis LAI values under sub-optimal water supply were reduced by 63% and under sub-optimal nitrogen supply by 50%. Radiation use efficiency (RUE) based on total incident short-wave radiation was 1.34 g MJ(-1) and did not differ among treatments. The conservative nature of RUE was the result of the crop reducing leaf area rather than leaf nitrogen content (which would have affected photosynthetic activity) under these moderate levels of nitrogen limitation. The transpiration efficiency coefficient was also conservative and averaged 4.7 Pa in the dry treatments. Kernel nitrogen percentage varied from 2.08 to 2.42%. The study provides a data set and a basis to consider ways to improve simulation capabilities of water and nitrogen effects on spring wheat. (C) 1997 Elsevier Science B.V.
Resumo:
Water deficit and ABA application on leaf gas exchange and flavonoid content in marigold (Calendula officinalis L.).The goal of this study was to evaluate the effects of water deficit and abscisic acid (ABA) application on physiological parameters and flavonoid production in marigold plant. The experiment was performed under nursery conditions with potted plants. It was tested water deficit by withholding water (control - diary irrigation, 3, 6 and 9 days without irrigation) followed by 3 ABA concentrations (0, 10 e 100 mu M) applied in the beginning of blooming. It was evaluated the relative water content and the leaf gas exchange using a portable infrared gas analyzer (A: net photosynthesis, gs: stomatal conductance, E: transpiration, Ci: CO(2) intercellular concentration and EUA: water use efficiency). At the end of 9 days of water deficit there were significant decreases in all the characteristics evaluated, independent of ABA application. This suggests that the main effect of ABA was to cause a reduction on gs which was accompanied of a reduction in A, only when the plants were submitted to the water deficit. There was no significant difference among the levels of water deficit tested in relation to the total flavonoid content in inflorescences. However, ABA restricted the flavonoids biosynthesis both in control plant and stressed plants.
Resumo:
Objectives The purpose of the present work was to characterize file pharmacological profile of different L. alba chemotypes and to correlate the obtained data to the presence of chemical constituents detected by phytochemical analysis. Methods Essential oils from each L. alba chemotype (LP1-LP7) were characterized by gas chromatography-mass spectrometry (GC-MS) and extracted non-volatile compounds were analysed by HPLC and GC-MS. The anticonvulsant actions of file extracted compounds were studied in pentylenetetrazole-induced clonic seizures in mice and then effect oil motor coordination was studied using the rota-rod test in rats. The synaptosomes and synaptic membranes of the rats were examined for the influence of LP3 chemotype extract oil GABA uptake and binding experiments. Key findings Behavioural parameters encompassed by the pentylenetetrazole test indicated that 80% ethanolic extracts of LP1, LP3 and LP6 L. alba chemotypes were more effective as anticonvulsant agents. Neurochemical assays using synaptosomes and synaptic membranes showed that L. alba LP3 chemotype 80% ethanolic extract inhibited GABA uptake and GABA binding ill a dose-dependent manner. HPLC analysis showed that LP1, LP3 and LP6 80% ethanolic extracts presented a similar profile of constituents, differing from those seen in LP2, LP4, LP5 and LP7 80% ethanolic extracts, which exhibited no anticonvulsant effect. GC-MS analysis indicated the Occurrence of phenylpropanoids in methanolic fractions obtained from LP1, LP3 and LP6 80% ethanolic extracts and also the accumulation of inositol and flavonoids in hydroalcoholic fractions. Conclusions Our results suggest that the anticonvulsant properties shown by L. alba might be correlated to the presence of it complex of non-volatile Substances (phenylpropanoids, flavonoids and/or inositols), and also to the volatile terpenoids (beta-myrcene, citral, limonene and carvone), which have been previously Validated as anticonvulsants.
Resumo:
The common bean is affected by several pathogens that can cause severe yield losses. Here we report the introgression of resistance genes to anthracnose, angular leaf spot and rust in the `carioca-type` bean cultivar `Ruda`. Initially, four backcross (BC) lines were obtained using `TO`, `AB 136`, `Ouro Negro` and `AND 277` as donor parents. Molecular fingerprinting was used to select the lines genetically closer to the recurrent parent. The relative genetic distances between `Ruda` and the BC lines varied between 0.0% and 1.99%. The BC lines were intercrossed and molecular markers linked to the resistance genes were used to identify the plants containing the genes of interest. These plants were selfed to obtain the F(2), F(3) and F(4) plants which were selected based on the presence of the molecular markers mentioned and resistance was confirmed in the F(4) generation by inoculation. Four F(4:7) pyramid lines with all the resistance genes showed resistance spectra equivalent to those of their respective donor parents. Yield tests showed that these lines are as productive as the best `carioca-type` cultivars.
Resumo:
Leaf water potential (psi (l)) represents a good indicator of the water status of plants, and continuous monitoring of it can be useful in research and field applications such as scheduling irrigation. Changes in stem diameter (Sd) were used for monitoring psi (l) of pot-grown sorghum [Sorghum bicolor (L.) Moench] plants in a glasshouse. This method requires occasional calibration of S-d values against psi (l). Predicted values of psi (l), based on a single calibration show a good correlation with measured psi (l), values over a period of 13 d before and after the calibration. The correlation can further be improved with shorter time intervals.
Resumo:
Large (>1600 mum), ingestively masticated particles of bermuda grass (Cynodon dactylon L. Pers.) leaf and stem labelled with Yb-169 and Ce-144 respectively were inserted into the rumen digesta raft of heifers grazing bermuda grass. The concentration of markers in digesta sampled from the raft and ventral rumen were monitored at regular intervals over approximately 144 h. The data from the two sampling sites were simultaneously fitted to two pool (raft and ventral rumen-reticulum) models with either reversible or sequential flow between the two pools. The sequential flow model fitted the data equally as well as the reversible flow model but the reversible flow model was used because of its greater application. The reversible flow model, hereafter called the raft model, had the following features: a relatively slow age-dependent transfer rate from the raft (means for a gamma 2 distributed rate parameter for leaf 0.0740 v. stem 0.0478 h(-1)), a very slow first order reversible flow from the ventral rumen to the raft (mean for leaf and stem 0.010 h(-1)) and a very rapid first order exit from the ventral rumen (mean of leaf and stem 0.44 h(-1)). The raft was calculated to occupy approximately 0.82 total rumen DM of the raft and ventral rumen pools. Fitting a sequential two pool model or a single exponential model individually to values from each of the two sampling sites yielded similar parameter values for both sites and faster rate parameters for leaf as compared with stem, in agreement with the raft model. These results were interpreted as indicating that the raft forms a large relatively inert pool within the rumen. Particles generated within the raft have difficulty escaping but once into the ventral rumen pool they escape quickly with a low probability of return to the raft. It was concluded that the raft model gave a good interpretation of the data and emphasized escape from and movement within the raft as important components of the residence time of leaf and stem particles within the rumen digesta of cattle.
Resumo:
Cell suspension cultures are useful for a wide range of biochemical and physiological studies, yet their production can be technically demanding and often unreliable. Here we describe a protocol for producing Arabidopsis cell suspension cultures that is reliable and easy to use.
Resumo:
The role of nitrate, ammonium, and culture medium pH on shoot organogenesis in Nicotiana tabacum zz100 leaf discs was examined. The nitrogen composition of a basal liquid shoot induction medium (SIM) containing 39.4 mM NO3- and 20.6 mM NH4+ was altered whilst maintaining the overall ionic balance with Na+ and Cl- ions. Omission of total nitrogen and nitrate, but not ammonium, from SIM prevented the initiation and formation of shoots. When nitrate was used as the sole source of nitrogen, a high frequency of explants initiated and produced leafy shoots. However, the numbers of shoots produced were significantly fewer than the control SIM. Buffering nitrate-only media with the organic acid 2[N-morpholinol]thanesulphonic acid (MES) could not compensate for the omission of ammonium. Ammonium used as the sole source of nitrogen appeared to have a negative effect on explant growth and morphogenesis, with a significant lowering of media pH. Buffering ammonium-only media with MES stabilized pH and allowed a low frequency of explants to initiate shoot meristems. However, no further differentiation into leafy shoots was observed. The amount of available nitrogen appears to be less important than the ratio between nitrate and ammonium. Shoot formation was achieved with a wide range of ratios, but media containing 40 mM nitrate and 20 mM ammonium (70:30) produced the greatest number of shoots per explant. Results from this study indicate a synergistic effect between ammonium and nitrate on shoot organogenesis independent of culture medium pH.
Resumo:
The role of shoot water status in mediating the decline in leaf elongation rate of nitrogen (N)-deprived barley plants was assessed. Plants were grown at two levels of N supply, with or without the application of pneumatic pressure to the roots. Applying enough pressure (balancing pressure) to keep xylem sap continuously bleeding from the cut surface of a leaf allowed the plants to remain at full turgor throughout the experiments. Plants from which N was withheld required a greater balancing pressure during both day and night. This difference in balancing pressure was greater at high (2.0 kPa) than low (1.2 kPa) atmospheric vapour pressure deficit (VPD). Pressurizing the roots did not prevent the decline in leaf elongation rate induced by withholding N at either high or low VPD. Thus low shoot water status did not limit leaf growth of N-deprived plants.
Resumo:
The present study examined the utility of a stress and coping model of adaptation to a homeless shelter among homeless adolescents. Seventy-eight homeless adolescents were interviewed and completed self-administered scales at Time 1 (day of shelter entry) and Time 2 (day of discharge). The mean duration of stay at the shelter was 7.23 days (SD = 7.01). Predictors included appraisal (threat and self-efficacy), coping resources, and coping strategies (productive, nonproductive, and reference to others coping). Adjustment outcomes were Time I measures of global distress, physical health, clinician-and youthworker- rated social adjustment, and externalizing behavior and Time 2 youthworker-rated social adjustment and goal achievement. Results of hierarchical regression analyses indicated that after controlling for the effects of relevant background variables (number of other shelters visited, sexual, emotional, and physical abuse), measures of coping resources, appraisal, and coping strategies evidenced distinct relations with measures of adjustment in ways consistent with the model's predictions with few exceptions. In cross-sectional analyses better Time I adjustment was related to reports of higher levels of coping resources, self-efficacy beliefs, and productive coping strategies, and reports of lower levels of threat appraisal and nonproductive coping strategies. Prospective analyses showed a link between reports of higher levels of reference to others coping strategies and greater goal achievement and, unexpectedly, an association between lower self-efficacy beliefs and better Time 2 youthworker-rated social adjustment. Hence, whereas prospective analyses provide only limited support for the use of a stress and coping model in explaining the adjustment of homeless adolescents to a crisis shelter, cross-sectional findings provide stronger support.
Resumo:
A sample of recombinant inbred lines (RILs) was derived from a bi-parental cross between Lemont and BK88-BR6, which contrasted in maintenance of leaf water potential (LWP) and expression of osmotic adjustment (OA). Genotypic variation for LWP and OA, and their associations with yield determination under water deficit, was studied in a series of five field experiments. Genotypic variation in the maintenance of high LWP was consistent across water deficit experiments. In the determination of genotypic variation in the maintenance of LWP, rate of water deficit was not an important factor influencing ranking, but degree of water deficit, and phenological development stage were important, particularly around heading. Genotypic variation in expression of OA was also observed under water deficits during both vegetative and flowering stages but ranking was inconsistent across experiments. This was in part because of large experimental errors associated with its measurement, but also because the expression of OA was associated with extent of decline of LWP. The relationship between OA and LWP was demonstrated when data were combined across experiments for vegetative and flowering stages. Under water-limited conditions around flowering, grain yield reduction was mainly due to a increased spikelet sterility. Variation in OA was not related to grain yield nor yield components. There were however, negative phenotypic and genetic correlations between LWP and percentage spikelet sterility measured at flowering stage on panicles at the same development stage during a water deficit treatment. This suggests that traits contributing to the maintenance of high LWP minimized the effects of water deficit on spikelet sterility and consequently grain yield. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Diseases and insect pests are major causes of low yields of common bean (Phaseolus vulgaris L.) in Latin America and Africa. Anthracnose, angular leaf spot and common bacterial blight are widespread foliar diseases of common bean that also infect pods and seeds. One thousand and eighty-two accessions from a common bean core collection from the primary centres of origin were investigated for reaction to these three diseases. Angular leaf spot and common bacterial blight were evaluated in the field at Santander de Quilichao, Colombia, and anthracnose was evaluated in a screenhouse in Popayan, Colombia. By using the 15-group level from a hierarchical clustering procedure, it was found that 7 groups were formed with mainly Andean common bean accessions (Andean gene pool), 7 groups with mainly Middle American accessions (Middle American gene pool), while 1 group contained mixed accessions. Consistent with the theory of co-evolution, it was generally observed that accessions from the Andean gene pool were resistant to Middle American pathogen isolates causing anthracnoxe, while the Middle American accessions were resistant to pathogen isolates from the Andes. Different combinations of resistance patterns were found, and breeders can use this information to select a specific group of accessions on the basis of their need.
Resumo:
Predicting plant leaf area production is required for modelling carbon balance and tiller dynamics in plant canopies. Plant leaf area production can be studied using a framework based on radiation intercepted, radiation use efficiency (RUE) and leaf area ratio (LAR) (ratio of leaf area to net above-ground biomass). The objective of this study was to test this framework for predicting leaf area production of sorghum during vegetative development by examining the stability of the contributing components over a large range of plant density. Four densities, varying from 2 to 16 plants m(-2), were implemented in a field experiment. Plants were either allowed to tiller or were maintained as uniculm by systematic tiller removal. In all cases, intercepted radiation was recorded daily and leaf area and shoot dry matter partitioning were quantified weekly at individual culm level. Up to anthesis, a unique relationship applied between fraction of intercepted radiation and leaf area index, and between shoot dry weight accumulation and amount of intercepted radiation, regardless of plant density. Partitioning of shoot assimilate between leaf, stem and head was also common across treatments up to anthesis, at both plant and culm levels. The relationship with thermal time (TT) from emergence of specific leaf area (SLA) and LAR of tillering plants did not change with plant density. In contrast, SLA of uniculm plants was appreciably lower under low-density conditions at any given TT from emergence. This was interpreted as a consequence of assimilate surplus arising from the inability of the plant to compensate by increasing the leaf area a culm could produce. It is argued that the stability of the extinction coefficient, RUE and plant LAR of tillering plants observed in these conditions provides a reliable way to predict leaf area production regardless of plant density. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.