973 resultados para Leaf fertilization
Resumo:
A deficiência de B é muito comum nos cafezais brasileiros, mas as respostas do cafeeiro ao B têm sido erráticas, dependendo do ano, do modo e época de aplicação e, ainda, da fonte de B empregada. Um melhor entendimento dos efeitos do B na fisiologia e anatomia do cafeeiro é importante para o desenvolvimento de um programa racional de adubação boratada, uma vez que a anatomia da planta pode influenciar a translocação do nutriente. Neste experimento, plantas de dois cultivares foram cultivadas em soluções nutritivas com 0,0 (deficiente), 5,0 (adequado) e 25,0 µM (alto) de B. Quando os primeiros sintomas de deficiência apareceram, as folhas foram cortadas e tiveram suas paredes celulares isoladas e analisadas quanto aos teores de B e Ca. Cortes foram feitos em folhas novas e no ápice de ponteiros e fotografados em microscópio eletrônico de varredura. A resposta dos dois cultivares ao B foi semelhante, não tendo sido observados sintomas de toxidez. O teor de B nas paredes celulares foi aumentado com o incremento da concentração desse elemento na solução, enquanto o teor de Ca não foi afetado. A relação Ca/B decresceu com o aumento da concentração de B na solução. Com deficiência de B, os tecidos vasculares foram desorganizados e as paredes do xilema ficaram mais finas. Folhas de café com deficiência deste nutriente apresentaram menos estômatos, os quais se encontravam.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Algumas culturas têm pouca adaptação ao sistema plantio direto (SPD), em vista da alta compactação da camada superficial do solo. Nesse caso, o mecanismo utilizado na semeadora para a abertura dos sulcos para deposição do fertilizante pode ter grande importância no sentido de facilitar a penetração das raízes. Avaliouse a influência do mecanismo de distribuição de fertilizante e da adubação nitrogenada na cultura do arroz de terras altas (Oryza sativa) no sistema plantio direto. O experimento foi conduzido nos anos agrícolas 2001/2002 e 2002/2003, em Botucatu-SP, Brasil. O delineamento experimental foi em blocos casualizados, com parcelas subdivididas e quatro repetições. As parcelas foram constituídas por dois mecanismos de distribuição de fertilizantes (haste sulcadora e disco duplo). Nas subparcelas, quatro níveis de N foram aplicados em cobertura (0, 40, 80 e 120 kg ha-1). Avaliou-se a profundidade de abertura do sulco e de deposição das sementes, a população de plantas, a altura de plantas, o número de colmos e de panículas m-2, o número total de espiguetas por panícula, a fertilidade das espiguetas, a massa de 1.000 grãos, a matéria seca da parte aérea, a produtividade e o teor de N na folha bandeira. O sucesso no estabelecimento da cultura do arroz de terras altas no SPD nas regiões de inverno seco do Brasil está diretamente ligado ao mecanismo de distribuição das semeadoras-adubadoras. A haste sulcadora promoveu maior profundidade de deposição de sementes, conseqüentemente reduzindo o estande, o número de panículas por área e a produtividade. A aplicação de N em cobertura no arroz de terras altas em SPD proporciona maiores produtividades quando a semeadura é realizada com mecanismo de disco duplo.
Resumo:
There is a lack of long-term research on potassium fertilization for soybean in the tropical and subtropical soils of Brazil and the residual effect of the fertilizer has generally not been considered. An experiment was conducted in plots that had been fertilized with 0, 40, 80, 160 and 240 kg ha(-1) of K2O for 3 years on a Dark Red Latosol, loamy sand (Acrortox). The effects of annual or residual fertilization with those rates of K were studied for three additional years. Potassium was supplied as potassium chloride or potassium sulphate. Soil and leaf samples were taken annually. There was a residual effect of the nutrient, which provided for high yields up to the 3rd year with the highest rate of K. In order to maintain the K contents of the soil in the medium range and obtain at least 90% of the maximum grain yield, an annual application of 80 kg ha(-1) of K2O was necessary, irrespectively of the source. The highest soybean yields were always associated with K levels above 15 mg kg(-1) in the leaves and 1.2 mmol(c) dm(-3) in the soil.
Resumo:
A field experiment was conducted from 1989-90 to 1991-92 to study the effect of potassium fertilization on guava (Psidium guajava L.). using 1-year-old plants of 'Rica', grown in a Kanhapludalf soil in the Jaboticabal region in Brazil. During the first year the K doses used were: 0, 24.9, 49.8, 99.6, 149.4 and 199.2 g K/plant, which were doubled during the second year and tripled during the third. In the third year the increase in g level showed positive response in yield. About 90% of the maximum yield observed was associated with 527 g K/plant and with a leaf content of 18.9 g K/kg.
Resumo:
Lady palm, [Rhapis excelsa (Thunberg) Henry ex. Rehder] is one of the most cultivated ornamental palms in the world, for use as a vase plant or in shaded landscapes. Because limited information exists on lady palm response to fertilizers, the objective of this study was to evaluate the effect of different types of fertilization and substrates on lady palm seedling growth and development. Three year old lady palms were planted in 8-L pots, filled with a mix of soil, manure, and sand 1:1:1 (v:v:v), placed under a 50% shade, and irrigated with microspray. Treatments were substrate fertilization with 500 g P(2)O(5) and 100 g K(2)O per m(3); fertilization with 1.8 kg of P(2)O(5) (simple superphosphate) per m3; 50 g of nitrogen (N), P(2)O(5), and K(2)O of a granulated fertilizer (10:10:10) per m(3), control (without fertilization), and a foliar fertilization in addition to these treatments using the commercial product Biofert (8:9:9). Treatments were replicated four times in a randomized block design. Each treatment plot consisted of four plants. Data were collected at 140, 170, 200, 230, 260, and 290 days after transplanting (DAT) for plant heights, stem diameter at substrate level, number of leaves, shoots, and canopy, roots fresh and dry matter samples were harvest at 290 days. Foliar fertilization resulted in significantly greater plant height in a 140, 120, 200, and 230 DAT and plant diameter on the 140, 260, and 290 DAT. There was interaction among factors for number of leaves with fertilization based on P(2)O(5) and K(2)O when leaf fertilizer was added that resulted in a greater number of leaves.
Resumo:
Currently there is very little information on the response of fruiting perennial plants to applied P. This is especially true for tropical production areas where soils have a high capacity of P fixation, and are poor in native phosphorus. An alternative to soil P fertilization, which is inefficient in fixing soils, is to apply phosphorus as a foliar spray. P is quickly absorbed by leaves, and is redistributed quite well through the plants because its phloem mobility, and foliar application may be a viable practice. The purpose of this present work, is to determine the effectiveness of foliar P application on the nutritional status and yield of guava. The experiment was done in a Typic Hapludox, for three consecutive agricultural years, in an adult orchard of 'Paluma' guava. Five treatments were tested: four rates leaf applications of P (0-0.5-1.0 and 2.0% of P2O5) and a control where P was applied to soil (200 g of P2O5/plant). Through the results it was verified that the foliar application of P altered the concentration of the nutrient in the soil (13 to 48 mg dm-3 P-resin), and in the guava leaves (1.2 to 1.8 g of P kg-1), but did not affect the production of fruits. In conclusion, in field conditions, it is viable to combine the phosphorus foliar fertilization with disease control, without increasing the operations and, consequently, the production cost.
Spatial distribution of Yellow Sigatoka Leaf Spot correlated with soil fertility and plant nutrition
Resumo:
This study analyzed the spatial distribution of Yellow Sigatoka Leaf Spot relative to soil fertility and plant nutritional status using geostatistics. The experimental area comprised 1.2 ha, where 27 points were georeferenced and spaced on a regular grid 18 × 18 m. The severity of Yellow Sigatoka, soil fertility and plant nutritional status were evaluated at each point. The spherical model was adjusted for all variables using restricted maximum likelihood. Kriging maps showed the highest infection rate of Sigatoka occurred in high areas of the field which had the highest concentration of sand, while the lowest disease was found in lower areas with lower silt, organic matter, total exchangeable bases, effective cation exchange capacity, base saturation, Ca and Mg in soil, and foliar sulfur (S). These results may help farmers manage Yellow Sigatoka disease more effectively, with balanced fertilization and reduced fungicide application. This practice minimizes the environmental impact and cost of production while contributing to production sustainability.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A field trial was conducted designed in a completely randomized block in a 4 x 3 factorial arrangement to evaluate the application of nitrogen doses (N) (0, 40, 80 and 160 kg/ha) on the morphogenical characteristics and dry matter partition of three forage grasses (Panicum maximum cvs. Mombasa and Tanzania and Brachiaria sp. Hybrid Mulato). The leaf appearance (LAR, leaf/day) and stretching (LER; mm/day) rates, the number of green leaves per tiller (NLT) and the average weight of tillers (MTW; g) presented s positive linear response to the N dose while the phyllochron (Phil; day/leaves) showed a negative linear response. The highest LER, IAL and final leaf length (FLL; cm) occurred in the Mombaca and Tanzania grasses, while the highest LAR occurred in the Mulato grass. There was a negative quadratic effect of the N dose on the stem elongation rate (SER; mm/day) and LF. The Mombaca and Tanzania grasses presented the highest SER; however, in just two forages. The production of total dry matter (TDM; kg/ha), leaves (LDM; kg/ha) and stems (SDM; kg/ha) increased linearly and quadratically with the N dose, respectively, for the Mombaca and Tanzania grasses. There was a high positive correlation among DM, LDM and SDM and the Mombaca grass MTW. The dry matter production and morphogenic characteristics were influenced by the nitrogen fertilization as a result of the substantial increase in the flow of tissues stimulated by fertilization, proving the importance of N for forage biomass accumulation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chlorophyll determination with a portable chlorophyll meter can indicate the period of highest N demand of plants and whether sidedressing is required or not. In this sense, defining the optimal timing of N application to common bean is fundamental to increase N use efficiency, increase yields and reduce the cost of fertilization. The objectives of this study were to evaluate the efficiency of N sufficiency index (NSI) calculated based on the relative chlorophyll index (RCI) in leaves, measured with a portable chlorophyll meter, as an indicator of time of N sidedressing fertilization and to verify which NSI (90 and 95 %) value is the most appropriate to indicate the moment of N fertilization of common bean cultivar Perola. The experiment was carried out in the rainy and dry growing seasons of the agricultural year 2009/10 on a dystroferric Red Nitosol, in Botucatu, São Paulo State, Brazil. The experiment was arranged in a randomized complete block design with five treatments, consisting of N managements (M1: 200 kg ha-1 N (40 kg at sowing + 80 kg 15 days after emergence (DAE) + 80 kg 30 DAE); M2: 100 kg ha-1 N (20 kg at sowing + 40 kg 15 DAE + 40 kg 30 DAE); M3: 20 kg ha-1 N at sowing + 30 kg ha-1 when chlorophyll meter readings indicated NSI < 95 %; M4: 20 kg ha-1 N at sowing + 30 kg ha-1 N when chlorophyll meter readings indicated NSI < 90 % and, M5: control (without N application)) and four replications. The variables RCI, aboveground dry matter, total leaf N concentration, production components, grain yield, relative yield, and N use efficiency were evaluated. The RCI correlated with leaf N concentrations. By monitoring the RCI with the chlorophyll meter, the period of N sidedressing of common bean could be defined, improving N use efficiency and avoiding unnecessary N supply to common bean. The NSI 90 % of the reference area was more efficient to define the moment of N sidedressing of common bean, to increase N use efficiency.
Resumo:
In the last years, sustainable horticulture has been increasing; however, to be successful this practice needs an efficient soil fertility management to maintain a high productivity and fruit quality standards. For this purpose composted organic materials from agri-food industry and municipal solid waste has been used as a source to replace chemical fertilizers and increase soil organic matter. To better understand the influence of compost application on soil fertility and plant growth, we carried out a study comparing organic and mineral nitrogen (N) fertilization in micro propagated plants, potted trees and commercial peach orchard with these aims: 1. evaluation of tree development, CO2 fixation and carbon partition to the different organs of two-years-old potted peach trees. 2. Determination of soil N concentration and nitrate-N effect on plant growth and root oxidative stress of micro propagated plant after increasing rates of N applications. 3. Assessment of soil chemical and biological fertility, tree growth and yield and fruit quality in a commercial orchard. The addition of compost at high rate was effective in increasing CO2 fixation, promoting root growth, shoot and fruit biomass. Furthermore, organic fertilizers influenced C partitioning, favoring C accumulation in roots, wood and fruits. The higher CO2 fixation was the result of a larger tree leaf area, rather than an increase in leaf photosynthetic efficiency, showing a stimulation of plant growth by application of compost. High concentrations of compost increased total soil N concentration, but were not effective in increasing nitrate-N soil concentration; in contrast mineral-N applications increased linearly soil nitrate-N, even at the lowest rate tested. Soil nitrate-N concentration influenced positively plant growth at low rate (60- 80 mg kg-1), whereas at high concentrations showed negative effects. In this trial, the decrease of root growth, as a response to excessive nitrate-N soil concentration, was not anticipated by root oxidative stress. Continuous annual applications of compost for 10 years enhanced soil organic matter content and total soil N concentration. Additionally, high rate of compost application (10 t ha-1 year-1) enhanced microbial biomass. On the other hand, different fertilizers management did not modify tree yield, but influenced fruit size and precocity index. The present data support the idea that organic fertilizers can be used successfully as a substitute of mineral fertilizers in fruit tree nutrient management, since they promote an increase of soil chemical and biological fertility, prevent excessive nitrate-N soil concentration, promote plant growth and potentially C sequestration into the soil.
Resumo:
There is a lack of plant response to fertilizer K in some sandy soils even though routine soil tests for soil available K are shown to be low. This lack of plant response to K fertilizer application may be explained by K release from nonexchangeable forms. Greenhouse and laboratory experiments were conducted to evaluate (a) response of bentgrass (Agrostis palustris [Agrostis stolonifera var. palustris]) cv. Pencross grown in rootzones with different sand sources to K fertilizer application and (b) K release from nonexchangeable forms from the different sand sources as an index to K availability. Experimental variables in the greenhouse were 2 K levels (0 and 250 mg K/kg soil) and 8 sand rootzone sources. Rootzone soils were sub-irrigated to ensure no K loss from leaching. Two laboratory methods (boiling 1 M HNO3 extraction and continuous leaching with 0.01 M HCl) and total K uptake by the bentgrass were employed to index K release from nonexchangeable forms for each rootzone source. K fertilizer application significantly increased bentgrass yield growing in one rootzone source and root weight in 3 rootzone sources. K uptake by bentgrass and the 2 laboratory methods showed important differences in K release from the sand rootzones. The K removed by the 2 laboratory methods was closely related to leaf tissue K and K uptake, with the 1 M HNO3 extraction method providing the closest fit. The release of K from primary minerals in some rootzones with high sand content is proceeding at rates to satisfy bentgrass requirements for K. The 1 M HNO3 extraction method may provide an alternative to the routine laboratory procedures presently being used to measure the extractable K in sand-based constructed putting greens by measuring K contributed by nonexchangeable forms.