954 resultados para Layered perovskites,Photo-Induced Current Transient Spectroscopy,PICTS,deep states,2D perovskites
Resumo:
The photosensitivity of GeSx binary glasses in response to irradiation to femtosecond pulses at 800 nm is investigated. Samples with three different molecular compositions were irradiated under different exposure conditions. The material response to laser exposure was characterized by both refractometry and micro-Raman spectroscopy. It is shown that the relative content of sulfur in the glass matrix influences the photo-induced refractive index modification. At low sulfur content, both positive and negative index changes can be obtained while at high sulfur content, only a positive index change can be reached. These changes were correlated with variations in the Raman response of exposed glass which were interpreted in terms of structural modifications of the glass network. Under optimized exposure conditions, waveguides with positive index changes of up to 7.8x10−3 and a controllable diameter from 14 to 25 μm can be obtained. Direct inscription of low insertion losses (IL = 3.1 – 3.9 dB) waveguides is demonstrated in a sample characterized by a S/Ge ratio of 4. The current results open a pathway towards the use of Ge-S binary glasses for the fabrication of integrated mid-infrared photonic components.
Resumo:
Arterial hypertension is a major risk factor for ischemic stroke. However, the management of preexisting hypertension is still controversial in the treatment of acute stroke in hypertensive patients. The present study evaluates the influence of preserving hypertension during focal cerebral ischemia on stroke outcome in a rat model of chronic hypertension, the spontaneously hypertensive rats (SHR). Focal cerebral ischemia was induced by transient (1 h) occlusion of the middle cerebral artery, during which mean arterial blood pressure was maintained at normotension (110-120 mm Hg, group 1, n=6) or hypertension (160-170 mm Hg, group 2, n=6) using phenylephrine. T2-, diffusion- and perfusion-weighted MRI were performed serially at five different time points: before and during ischemia, and at 1, 4 and 7 days after ischemia. Lesion volume and brain edema were estimated from apparent diffusion coefficient maps and T2-weighted images. Regional cerebral blood flow (rCBF) was measured within and outside the perfusion deficient lesion and in the corresponding regions of the contralesional hemisphere. Neurological deficits were evaluated after reperfusion. Infarct volume, edema, and neurological deficits were significantly reduced in group 2 vs. group 1. In addition, higher values and rapid restoration of rCBF were observed in group 2, while rCBF in both hemispheres was significantly decreased in group 1. Maintaining preexisting hypertension alleviates ischemic brain injury in SHR by increasing collateral circulation to the ischemic region and allowing rapid restoration of rCBF. The data suggest that maintaining preexisting hypertension is a valuable approach to managing hypertensive patients suffering from acute ischemic stroke. Published by Elsevier B.V.
Resumo:
Semiconductor nanowires (NWs) are one- or quasi one-dimensional systems whose physical properties are unique as compared to bulk materials because of their nanoscaled sizes. They bring together quantum world and semiconductor devices. NWs-based technologies may achieve an impact comparable to that of current microelectronic devices if new challenges will be faced. This thesis primarily focuses on two different, cutting-edge aspects of research over semiconductor NW arrays as pivotal components of NW-based devices. The first part deals with the characterization of electrically active defects in NWs. It has been elaborated the set-up of a general procedure which enables to employ Deep Level Transient Spectroscopy (DLTS) to probe NW arrays’ defects. This procedure has been applied to perform the characterization of a specific system, i.e. Reactive Ion Etched (RIE) silicon NW arrays-based Schottky barrier diodes. This study has allowed to shed light over how and if growth conditions introduce defects in RIE processed silicon NWs. The second part of this thesis concerns the bowing induced by electron beam and the subsequent clustering of gallium arsenide NWs. After a justified rejection of the mechanisms previously reported in literature, an original interpretation of the electron beam induced bending has been illustrated. Moreover, this thesis has successfully interpreted the formation of NW clusters in the framework of the lateral collapse of fibrillar structures. These latter are both idealized models and actual artificial structures used to study and to mimic the adhesion properties of natural surfaces in lizards and insects (Gecko effect). Our conclusion are that mechanical and surface properties of the NWs, together with the geometry of the NW arrays, play a key role in their post-growth alignment. The same parameters open, then, to the benign possibility of locally engineering NW arrays in micro- and macro-templates.
Resumo:
Intense research is being done in the field of organic photovoltaics in order to synthesize low band-gap organic molecules. These molecules are electron donors which feature in combination with acceptor molecules, typically fullerene derivarntives, forming an active blend. This active blend has phase separated bicontinuous morphology on a nanometer scale. The highest recorded power conversionrnefficiencies for such cells have been 10.6%. Organic semiconductors differ from inorganic ones due to the presence of tightly bonded excitons (electron-hole pairs)resulting from their low dielectric constant (εr ≈2-4). An additional driving force is required to separate such Frenkel excitons since their binding energy (0.3-1 eV) is too large to be dissociated by an electric field alone. This additional driving force arises from the energy difference between the lowest unoccupied molecular orbital (LUMO) of the donor and the acceptor materials. Moreover, the efficiency of the cells also depends on the difference between the highest occupied molecular orbital (HOMO) of the donor and LUMO of the acceptor. Therefore, a precise control and estimation of these energy levels are required. Furthermore any external influences that change the energy levels will cause a degradation of the power conversion efficiency of organic solar cell materials. In particular, the role of photo-induced degradation on the morphology and electrical performance is a major contribution to degradation and needs to be understood on a nanometer scale. Scanning Probe Microscopy (SPM) offers the resolution to image the nanometer scale bicontinuous morphology. In addition SPM can be operated to measure the local contact potential difference (CPD) of materials from which energy levels in the materials can be derived. Thus SPM is an unique method for the characterization of surface morphology, potential changes and conductivity changes under operating conditions. In the present work, I describe investigations of organic photovoltaic materials upon photo-oxidation which is one of the major causes of degradation of these solar cell materials. SPM, Nuclear Magnetic Resonance (NMR) and UV-Vis spectroscopy studies allowed me to identify the chemical reactions occurring inside the active layer upon photo-oxidation. From the measured data, it was possible to deduce the energy levels and explain the various shifts which gave a better understanding of the physics of the device. In addition, I was able to quantify the degradation by correlating the local changes in the CPD and conductivity to the device characteristics, i.e., open circuit voltage and short circuit current. Furthermore, time-resolved electrostatic force microscopy (tr-EFM) allowed us to probe dynamic processes like the charging rate of the individual donor and acceptor domains within the active blend. Upon photo-oxidation, it was observed, that the acceptor molecules got oxidized first preventing the donor polymer from degrading. Work functions of electrodes can be tailored by modifying the interface with monomolecular thin layers of molecules which are made by a chemical reaction in liquids. These modifications in the work function are particularly attractive for opto-electronic devices whose performance depends on the band alignment between the electrodes and the active material. In order to measure the shift in work function on a nanometer scale, I used KPFM in situ, which means in liquids, to follow changes in the work function of Au upon hexadecanethiol adsorption from decane. All the above investigations give us a better understanding of the photo-degradation processes of the active material at the nanoscale. Also, a method to compare various new materials used for organic solar cells for stability is proposed which eliminates the requirement to make fully functional devices saving time and additional engineering efforts.
Resumo:
In the last decades, an increasing interest in the research field of wide bandgap semiconductors was observed, mostly due to the progressive approaching of silicon-based devices to their theoretical limits. 4H-SiC is an example among these, and is a mature compound for applications. The main advantages offered 4H-SiC in comparison with silicon are an higher breakdown field, an higher thermal conductivity, a higher operating temperature, very high hardness and melting point, biocompatibility, but also low switching losses in high frequencies applications and lower on-resistances in unipolar devices. Then, 4H-SiC power devices offer great performance improvement; moreover, they can work in hostile environments where silicon power devices cannot function. Ion implantation technology is a key process in the fabrication of almost all kinds of SiC devices, owing to the advantage of a spatially selective doping. This work is dedicated to the electrical investigation of several differently-processed 4H-SiC ion- implanted samples, mainly through Hall effect and space charge spectroscopy experiments. It was also developed the automatic control (Labview) of several experiments. In the work, the effectiveness of high temperature post-implant thermal treatments (up to 2000°C) were studied and compared considering: (i) different methods, (ii) different temperatures and (iii) different duration of the annealing process. Preliminary p + /n and Schottky junctions were also investigated as simple test devices. 1) Heavy doping by ion implantation of single off-axis 4H-SiC layers The electrical investigation is one of the most important characterization of ion-implanted samples, which must be submitted to mandatory post-implant thermal treatment in order to both (i) recover the lattice after ion bombardment, and (ii) address the implanted impurities into lattice sites so that they can effectively act as dopants. Electrical investigation can give fundamental information on the efficiency of the electrical impurity activation. To understand the results of the research it should be noted that: (a) To realize good ohmic contacts it is necessary to obtain spatially defined highly doped regions, which must have conductivity as low as possible. (b) It has been shown that the electrical activation efficiency and the electrical conductivity increase with the annealing temperature increasing. (c) To maximize the layer conductivity, temperatures around 1700°C are generally used and implantation density high till to 10 21 cm -3 . In this work, an original approach, different from (c), is explored by the using very high annealing temperature, around 2000°C, on samples of Al + -implant concentration of the order of 10 20 cm -3 . Several Al + -implanted 4H-SiC samples, resulting of p-type conductivity, were investigated, with a nominal density varying in the range of about 1-5∙10 20 cm -3 and subjected to two different high temperature thermal treatments. One annealing method uses a radiofrequency heated furnace till to 1950°C (Conventional Annealing, CA), the other exploits a microwave field, providing a fast heating rate up to 2000°C (Micro-Wave Annealing, MWA). In this contest, mainly ion implanted p-type samples were investigated, both off-axis and on-axis <0001> semi-insulating 4H-SiC. Concerning p-type off-axis samples, a high electrical activation of implanted Al (50-70%) and a compensation ratio below 10% were estimated. In the work, the main sample processing parameters have been varied, as the implant temperature, CA annealing duration, and heating/cooling rates, and the best values assessed. MWA method leads to higher hole density and lower mobility than CA in equivalent ion implanted layers, resulting in lower resistivity, probably related to the 50°C higher annealing temperature. An optimal duration of the CA treatment was estimated in about 12-13 minutes. A RT resistivity on the lowest reported in literature for this kind of samples, has been obtained. 2) Low resistivity data: variable range hopping Notwithstanding the heavy p-type doping levels, the carrier density remained less than the critical one required for a semiconductor to metal transition. However, the high carrier densities obtained was enough to trigger a low temperature impurity band (IB) conduction. In the heaviest doped samples, such a conduction mechanism persists till to RT, without significantly prejudice the mobility values. This feature can have an interesting technological fall, because it guarantee a nearly temperature- independent carrier density, it being not affected by freeze-out effects. The usual transport mechanism occurring in the IB conduction is the nearest neighbor hopping: such a regime is effectively consistent with the resistivity temperature behavior of the lowest doped samples. In the heavier doped samples, however, a trend of the resistivity data compatible with a variable range hopping (VRH) conduction has been pointed out, here highlighted for the first time in p-type 4H-SiC. Even more: in the heaviest doped samples, and in particular, in those annealed by MWA, the temperature dependence of the resistivity data is consistent with a reduced dimensionality (2D) of the VRH conduction. In these samples, TEM investigation pointed out faulted dislocation loops in the basal plane, whose average spacing along the c-axis is comparable with the optimal length of the hops in the VRH transport. This result suggested the assignment of such a peculiar behavior to a kind of spatial confinement into a plane of the carrier hops. 3) Test device the p + -n junction In the last part of the work, the electrical properties of 4H-SiC diodes were also studied. In this case, a heavy Al + ion implantation was realized on n-type epilayers, according to the technological process applied for final devices. Good rectification properties was shown from these preliminary devices in their current-voltage characteristics. Admittance spectroscopy and deep level transient spectroscopy measurements showed the presence of electrically active defects other than the dopants ones, induced in the active region of the diodes by ion implantation. A critical comparison with the literature of these defects was performed. Preliminary to such an investigation, it was assessed the experimental set up for the admittance spectroscopy and current-voltage investigation and the automatic control of these measurements.
Resumo:
Understanding and measuring the interaction of light with sub-wavelength structures and atomically thin materials is of critical importance for the development of next generation photonic devices. One approach to achieve the desired optical properties in a material is to manipulate its mesoscopic structure or its composition in order to affect the properties of the light-matter interaction. There has been tremendous recent interest in so called two-dimensional materials, consisting of only a single to a few layers of atoms arranged in a planar sheet. These materials have demonstrated great promise as a platform for studying unique phenomena arising from the low-dimensionality of the material and for developing new types of devices based on these effects. A thorough investigation of the optical and electronic properties of these new materials is essential to realizing their potential. In this work we present studies that explore the nonlinear optical properties and carrier dynamics in nanoporous silicon waveguides, two-dimensional graphite (graphene), and atomically thin black phosphorus. We first present an investigation of the nonlinear response of nanoporous silicon optical waveguides using a novel pump-probe method. A two-frequency heterodyne technique is developed in order to measure the pump-induced transient change in phase and intensity in a single measurement. The experimental data reveal a characteristic material response time and temporally resolved intensity and phase behavior matching a physical model dominated by free-carrier effects that are significantly stronger and faster than those observed in traditional silicon-based waveguides. These results shed light on the large optical nonlinearity observed in nanoporous silicon and demonstrate a new measurement technique for heterodyne pump-probe spectroscopy. Next we explore the optical properties of low-doped graphene in the terahertz spectral regime, where both intraband and interband effects play a significant role. Probing the graphene at intermediate photon energies enables the investigation of the nonlinear optical properties in the graphene as its electron system is heated by the intense pump pulse. By simultaneously measuring the reflected and transmitted terahertz light, a precise determination of the pump-induced change in absorption can be made. We observe that as the intensity of the terahertz radiation is increased, the optical properties of the graphene change from interband, semiconductor-like absorption, to a more metallic behavior with increased intraband processes. This transition reveals itself in our measurements as an increase in the terahertz transmission through the graphene at low fluence, followed by a decrease in transmission and the onset of a large, photo-induced reflection as fluence is increased. A hybrid optical-thermodynamic model successfully describes our observations and predicts this transition will persist across mid- and far-infrared frequencies. This study further demonstrates the important role that reflection plays since the absorption saturation intensity (an important figure of merit for graphene-based saturable absorbers) can be underestimated if only the transmitted light is considered. These findings are expected to contribute to the development of new optoelectronic devices designed to operate in the mid- and far-infrared frequency range. Lastly we discuss recent work with black phosphorus, a two-dimensional material that has recently attracted interest due to its high mobility and direct, configurable band gap (300 meV to 2eV), depending on the number of atomic layers comprising the sample. In this work we examine the pump-induced change in optical transmission of mechanically exfoliated black phosphorus flakes using a two-color optical pump-probe measurement. The time-resolved data reveal a fast pump-induced transparency accompanied by a slower absorption that we attribute to Pauli blocking and free-carrier absorption, respectively. Polarization studies show that these effects are also highly anisotropic - underscoring the importance of crystal orientation in the design of optical devices based on this material. We conclude our discussion of black phosphorus with a study that employs this material as the active element in a photoconductive detector capable of gigahertz class detection at room temperature for mid-infrared frequencies.
Resumo:
Un matériau semi-conducteur utilisé lors de la fabrication d’antennes térahertz (THz), le quaternaire InGaAsP (E_g = 0,79 eV), subit une implantation ionique de Fe suivi d’un recuit thermique rapide (RTA) dans le but d’améliorer ses propriétés d’émission. Le recuit est nécessaire afin de recristalliser la couche amorphisée lors de l’implantation, donnant lieu à un polycristal rempli de défauts de recristallisation. On constate cependant que les matériaux implantés Fe offrent de meilleures performances que ceux simplement endommagés au Ga. Dans le but de départager l’effet des défauts de recristallisation et des impuretés de Fe, des mesures de spectroscopie transitoire des niveaux profonds (DLTS) et de DLTS en courant (I-DLTS), ainsi que de spectrométrie de masse d’ions secondaires par temps de vol (ToF-SIMS) ont été effectuées sur des échantillons non implantés et d’autres recristallisés. Les mesures DLTS et I-DLTS ont pour but de caractériser les niveaux profonds générés par ces deux procédures postcroissance, tout en identifiant le rôle que jouent les impuretés de Fe sur la formation de ces niveaux profonds. De plus, le voisinage des atomes de Fe dans le matériau recristallisé a été étudié à l’aide des mesures ToF-SIMS. Les mesures DLTS sur matériau recristallisé sont peu concluantes, car la mesure de capacité est faussée par la haute résistivité du matériau. Par contre, les mesures I-DLTS sur matériau recristallisé ont permis de conclure que les impuretés de Fe sont responsables de la formation d’une grande variété de niveaux d’énergie se trouvant entre 0,25 et 0,40 eV, alors que les défauts de structure induisent des niveaux de moins de 0,25 eV. La concentration de Fe est élevée par rapport au seuil de solubilité du Fe dans le matériau recristallisé. Il serait donc plausible que des agrégats de Fe se forment. Toutefois, cette hypothèse est infirmée par l'absence de pic aux masses correspondant à la molécule ^(56)Fe_2^+ sur les spectres ToF-SIMS. De plus, un modèle simple est utilisé afin d’estimer si certaines masses présentes sur les spectres ToF-SIMS correspondent à des liaisons non induites par la mesure dans le matériau recristallisé. Bien qu’aucune liaison avec le Ga et l'As n’est détectable, ce modèle n’exclut pas la possibilité de liens préférentiels avec l’In.
Resumo:
Un matériau semi-conducteur utilisé lors de la fabrication d’antennes térahertz (THz), le quaternaire InGaAsP (E_g = 0,79 eV), subit une implantation ionique de Fe suivi d’un recuit thermique rapide (RTA) dans le but d’améliorer ses propriétés d’émission. Le recuit est nécessaire afin de recristalliser la couche amorphisée lors de l’implantation, donnant lieu à un polycristal rempli de défauts de recristallisation. On constate cependant que les matériaux implantés Fe offrent de meilleures performances que ceux simplement endommagés au Ga. Dans le but de départager l’effet des défauts de recristallisation et des impuretés de Fe, des mesures de spectroscopie transitoire des niveaux profonds (DLTS) et de DLTS en courant (I-DLTS), ainsi que de spectrométrie de masse d’ions secondaires par temps de vol (ToF-SIMS) ont été effectuées sur des échantillons non implantés et d’autres recristallisés. Les mesures DLTS et I-DLTS ont pour but de caractériser les niveaux profonds générés par ces deux procédures postcroissance, tout en identifiant le rôle que jouent les impuretés de Fe sur la formation de ces niveaux profonds. De plus, le voisinage des atomes de Fe dans le matériau recristallisé a été étudié à l’aide des mesures ToF-SIMS. Les mesures DLTS sur matériau recristallisé sont peu concluantes, car la mesure de capacité est faussée par la haute résistivité du matériau. Par contre, les mesures I-DLTS sur matériau recristallisé ont permis de conclure que les impuretés de Fe sont responsables de la formation d’une grande variété de niveaux d’énergie se trouvant entre 0,25 et 0,40 eV, alors que les défauts de structure induisent des niveaux de moins de 0,25 eV. La concentration de Fe est élevée par rapport au seuil de solubilité du Fe dans le matériau recristallisé. Il serait donc plausible que des agrégats de Fe se forment. Toutefois, cette hypothèse est infirmée par l'absence de pic aux masses correspondant à la molécule ^(56)Fe_2^+ sur les spectres ToF-SIMS. De plus, un modèle simple est utilisé afin d’estimer si certaines masses présentes sur les spectres ToF-SIMS correspondent à des liaisons non induites par la mesure dans le matériau recristallisé. Bien qu’aucune liaison avec le Ga et l'As n’est détectable, ce modèle n’exclut pas la possibilité de liens préférentiels avec l’In.
Resumo:
Résumé : Les transferts d’électrons photo-induits et d’énergie jouent un rôle primordial dans un grand nombre de processus photochimiques et photobiologiques, comme la respiration ou la photosynthèse. Une très grande quantité de systèmes à liaisons covalentes ont été conçus pour copier ces processus de transferts. Cependant, les progrès sont, en grande partie, limités par les difficultés rencontrées dans la synthèse de nouveaux couples de types donneurs-accepteurs. Récemment, des espèces utilisant des liaisons non-covalentes, comme les liaisons hydrogènes, les interactions [pi]-[pi], les liaisons de coordination métal-ligands ou encore les interactions électrostatiques sont le centre d’un nouvel intérêt du fait qu’ils soient plus faciles à synthétiser et à gérer pour obtenir des comportements de transferts d’électrons ou d’énergie plus flexibles et sélectifs. C’est dans cette optique que le travail de cette thèse a été mené, i.e. de concevoir des composés auto-assemblés avec des porphyrines et un cluster de palladium pour l’étude des transferts d’électrons photo-induits et d’énergie. Cette thèse se divise en quatre parties principales. Dans la première section, le chapitre 3, deux colorants porphyriniques, soit le 5-(4-carboxylphényl)-10, 15, 20-tristolyl(porphyrinato)zinc(II) (MCP, avec Na+ comme contre-ion) et 5, 15-bis(4-carboxylphényl)-15, 20-bistolyl(porphyrinato)zinc(II) (DCP, avec Na+ comme contre-ion) ont été utilisés comme donneurs d’électrons, et le [Pd3(dppm)3(CO)]2+ ([Pd32+], dppm = (Ph2P)2CH2, PF6‾ est le contre-ion) a été choisi comme accepteur d’électrons. La structure de l’assemblage [Pd32+]•••porphyrine a été élucidée par l’optimisation des géométries à l’aide de calculs DFT. La spectroscopie d’absorption transitoire (TAS) montre la vitesse de transferts d’électrons la plus rapide (< 85 fs, temps inférieurs à la limite de détection) jamais enregistrée pour ce type de système (porphyrine-accepteur auto-assemblés). Généralement, ces processus sont de l’ordre de l’échelle de la ps-ns. Cette vitesse est comparable aux plus rapides transferts d’électrons rapportés dans le cas de systèmes covalents de type porphyrine-accepteur rapide (< 85 fs, temps inférieurs à la limite de détection). Ce transfert d’électrons ultra-rapide (ket > 1.2 × 1013 s-1) se produit à l’état énergétique S1 des colorants dans une structure liée directement par des interactions ioniques, ce qui indique qu’il n’est pas nécessaire d’avoir de forts liens ou une géométrie courbée entre le donneur et l’accepteur. Dans une deuxième section, au chapitre 4, nous avons étudié en profondeur l’effet de l’utilisation de porphyrines à systèmes π-étendus sur le comportement des transferts d’électrons. Le colorant 9, 18, 27, 36-tétrakis-meso-(4-carboxyphényl)tétrabenzoporphyrinatozinc(II) (TCPBP, avec Na+ comme contre-ion) a été sélectionné comme candidat, et le 5, 10, 15, 20-tétrakis-meso-(4-carboxyphényl)porphyrineatozinc(II) (TCPP, avec Na+ comme contre-ion) a aussi été utilisé à des fins de comparaisons. TCPBP et TCPP ont, tous deux, été utilisés comme donneurs d’électrons pour fabriquer des assemblages supramoléculaires avec le cluster [Pd32+] comme accepteur d’électrons. Les calculs DFT ont été réalisés pour expliquer les structures de ces assemblages. Dans les conditions expérimentales, ces assemblages sont composés principalement d’une porphyrine avec 4 équivalents de clusters. Ces systèmes ont aussi été investigués par des mesures de quenching (perte de luminescence), par électrochimie et par d’autres techniques. Les transferts d’électrons (< 85 fs; temps inférieurs à la limite de détection) étaient aussi observés, de façon similaire aux assemblages MCP•••[Pd32+] et [Pd32+]•••DCP•••[Pd32+]. Les résultats nous indiquent que la modification de la structure de la porphyrine vers la tétrabenzoporphyrine ne semble pas influencer le comportement des cinétiques de transferts d’électrons (aller ou retour). Dans la troisième section, le chapitre 5, nous avons synthétisé la porphyrine hautement [pi]-conjuguée: 9, 18, 27, 36-tétra-(4-carboxyphényléthynyl)tétrabenzoporphyrinatozinc(II) (TCPEBP, avec Na+ comme contre-ion) par des fonctionnalisations en positions meso- et β, β-, qui présente un déplacement vers le rouge de la bande de Soret et des bandes Q. TCPEBP était utilisé comme donneur d’électrons pour fabriquer des motifs supramoléculaires avec le [Pd32+] comme accepteur d’électrons. Des expériences en parallèle ont été menées en utilisant la 5, 10, 15, 20-tétra-(4-carboxyphényl)éthynylporphyrinatozinc(II) (TCPEP, avec Na+ comme contre-ion). Des calculs DFT et TDDFT ont été réalisés pour de nouveau déterminer de façon théorique les structures de ces systèmes. Les constantes d’association pour les assemblages TCPEBP•••[Pd32+]x sont les plus élevées parmi tous les assemblages entre des porphyrines et le cluster de palladium rencontrés dans la littérature. La TAS a montré, encore une fois, des processus de transferts d’électrons dans des échelles de l’ordre de 75-110 fs. Cependant, les transferts de retour d’électrons sont aussi très rapides (< 1 ps), ce qui est un obstacle potentiel pour des applications en cellules solaires à pigment photosensible (DSSCs). Dans la quatrième section, le chapitre 6, les transferts d’énergie triplets (TET) ont été étudiés pour les assemblages MCP•••[Pd32+] et [Pd32+]•••DCP•••[Pd32+]. Les analyses spectrales des états transitoires dans l’échelle de temps de la ns-[mu]s démontrent de façon évidente les TETs; ceux-ci présentent des transferts d’énergie lents et/ou des vitesses moyennes pour des transferts d’énergie T1-T1 (3dye*•••[Pd32+] → dye•••3[Pd32+]*) opérant à travers exclusivement le mécanisme de Förster avec des valeurs de kET autour de ~ 1 × 105 s-1 selon les mesures d’absorption transitoires à 298 K. Des forces motrices non-favorables rendent ces types de processus non-opérants ou très lents dans les états T1. L’état T1 de [Pd32+] (~8190 cm-1) a été qualitativement déterminé par DFT et par la mise en évidence de l’émission S0 ← Tn retardée à 680-700 nm provenant de l’annihilation T1-T1, ce qui fait que ce cluster peut potentiellement agir comme un donneur à partir de ses états Tn, et accepteur à partir de T1 à l’intérieur de ces assemblages. Des pertes d’intensités de types statiques pour la phosphorescence dans le proche-IR sont observées à 785 nm. Ce travail démontre une efficacité modérée des colorants à base de porphyrines pour être impliquée dans des TETs avec des fragments organométalliques, et ce, même attachées grâce à des interactions ioniques. En conclusion, les assemblages ioniques à base de porphyrines et de clusters de palladium présentent des propriétés de transferts d’électrons S1 ultra-rapides, et des transferts d’énergie T1 de vitesses modérées, ce qui est utile pour de possibles applications comme outils optoélectroniques. D’autres études, plus en profondeur, sont présentement en progrès.
Resumo:
Ultrafast pump-probe spectroscopy is a conceptually simple and versatile tool for resolving photoinduced dynamics in molecular systems. Due to the fast development of new experimental setups, such as synchrotron light sources and X-ray free electron lasers (XFEL), new spectral windows are becoming accessible. On the one hand, these sources have enabled scientist to access faster and faster time scales and to reach unprecedent insights into dynamical properties of matter. On the other hand, the complementarity of well-developed and novel techniques allows to study the same physical process from different points of views, integrating the advantages and overcoming the limitations of each approach. In this context, it is highly desirable to reach a clear understanding of which type of spectroscopy is more suited to capture a certain facade of a given photo-induced process, that is, to establish a correlation between the process to be unraveled and the technique to be used. In this thesis, I will show how computational spectroscopy can be a tool to establish such a correlation. I will study a specific process, which is the ultrafast energy transfer in the nicotinamide adenine dinucleotide dimer (NADH). This process will be observed in different spectral windows (from UV-VIS to X-rays), accessing the ability of different spectroscopic techniques to unravel the system evolution by means of state-of-the-art theoretical models and methodologies. The comparison of different spectroscopic simulations will demonstrate their complementarity, eventually allowing to identify the type of spectroscopy that is best suited to resolve the ultrafast energy transfer.
Resumo:
The present study investigated the role of ROS (reactive oxygen species) and COX (cyclooxygenase) in ethanol-induced contraction and elevation of [Ca(2+)](i) (intracellular [Ca(2+)]). Vascular reactivity experiments, using standard muscle bath procedures, showed that ethanol (1-800 mmol/l) induced contraction in endothelium-intact (EC(50): 306 +/- 34 mmol/l) and endothelium-denuded (EC(50): 180 +/- 40 mmol/l) rat aortic rings. Endothelial removal enhanced ethanol-induced contraction. Preincubation of intact rings with L-NAME [N(G)-nitro-L-arginine methyl ester; non-selective NOS (NO synthase) inhibitor, 100 mu mol/l], 7-nitroindazole [selective nNOS (neuronal NOS) inhibitor, 100 mu mol/l], oxyhaemoglobin (NO scavenger, 10 mu mol/l) and ODQ (selective inhibitor of guanylate cyclase enzyme, 1 mu mol/l) increased ethanol-induced contraction. Tiron [O(2)(-) (superoxide anion) scavenger, 1 mmol/l] and catalase (H(2)O(2) scavenger, 300 units/ml) reduced ethanol-induced contraction to a similar extent in both endothelium-intact and denuded rings. Similarly, indomethacin (non-selective COX inhibitor, 10 mu mol/l), SC560 (selective COX- I inhibitor, 1 mu mol/l), AH6809 [PGF(2 alpha) (prostaglandin F(2 alpha))] receptor antagonist, 10 mu mol/l] or SQ29584 [PGH(2)(prostaglandin H(2))/TXA(2) (thromboxane A(2)) receptor antagonist, 3 mu mol/l] inhibited ethanol-induced contraction in aortic rings with and without intact endothelium. In cultured aortic VSMCs (vascular smooth muscle cells), ethanol stimulated generation of O(2)(-) and H(2)O(2). Ethanol induced a transient increase in [Ca(2+)](i), which was significantly inhibited in VSMCs pre-exposed to tiron or indomethacin. Our data suggest that ethanol induces vasoconstriction via redox-sensitive and COX-dependent pathways, probably through direct effects on ROS production and Ca(2+) signalling. These findings identify putative molecular mechanisms whereby ethanol, at high concentrations, influences vascular reactivity. Whether similar phenomena occur in vivo at lower concentrations of ethanol remains unclear.
Resumo:
The alpha-conotoxins, a class of nicotinic acetylcholine receptor (nAChR) antagonists, are emerging as important probes of the role played by different nAChR subtypes in cell function and communication, In this study, the native alpha-conotoxins PnIA and PnIB were found to cause concentration-dependent inhibition of the ACh-induced current in all rat parasympathetic neurons examined, with IC50 values of 14 and 33 nM, and a maximal reduction in current amplitude of 87% and 71%, respectively. The modified alpha-conotoxin [N11S]PnIA reduced the ACh-induced current with an IC50 value of 375 nM and a maximally effective concentration caused 91% block, [A10L]PnIA was the most potent inhibitor, reducing the ACh-induced current in similar to 80% of neurons, with an IC50 value of 1.4 nM and 46% maximal block of the total current, The residual current was not inhibited further by alpha-bungarotoxin, but was further reduced by the cu-conotoxins PnIA or PnIB, and by mecamylamine. H-1 NMR studies indicate that PnIA, PnIB, and the analogues, [A10L]PnIA and [N11S]PnIA, have identical backbone structures. We propose that positions 10 and II of PnIA and PnIB influence potency and determine selectivity among alpha 7 and other nAChR subtypes, including alpha 3 beta 2 and alpha 3 beta 4, Four distinct components of the nicotinic ACh-induced current in mammalian parasympathetic neurons have been dissected with these conopeptides.
Resumo:
During brain development, spontaneous neuronal activity has been shown to play a crucial role in the maturation of neuronal circuitries. Activity-related signals may cause selective neuronal cell death and/or rearrangement of neuronal connectivity. To study the effects of sustained inhibitory activity on developing inhibitory (GABAergic) neurons, three-dimensional primary cell cultures of fetal rat telencephalon were used. In relatively immature cultures, muscimol (10 microns), a GABAA receptor agonist, induced a transient increase in apoptotic cell death, as evidenced by a cycloheximide-sensitive increase of free nucleosomes and an increased frequency of DNA double strand breaks (TUNEL labeling). Furthermore, muscimol caused an irreversible reduction of glutamic acid decarboxylase activity, indicating a loss of GABAergic neurons. The muscimol-induced death of GABAergic neurons was attenuated by the GABAA receptor blockers bicuculline (100 microns) and picrotoxin (100 microns), by depolarizing potassium concentrations (30 mM KCl) and by the L-type calcium channel activator BAY K8644 (2 microns). As compared to the cholinergic marker (choline acetyltransferase activity), glutamic acid decarboxylase activity was significantly more affected by various agents known to inhibit neuronal activity, including tetrodotoxin (1 micron), flunarizine (5 microns), MK 801 (50 microns) and propofol (40 microns). The present results suggest that the survival of a subpopulation of immature GABAergic neurons is dependent on sustained neuronal activity and that these neurons may undergo apoptotic cell death in response to GABAA autoreceptor activation.
Resumo:
A cortical visuomotor network, comprising the medial intraparietal sulcus (mIPS) and the dorsal premotor area (PMd), encodes the sensorimotor transformations required for the on-line control of reaching movements. How information is transmitted between these two regions and which pathways are involved, are less clear. Here, we use a multimodal approach combining repetitive transcranial magnetic stimulation (rTMS) and diffusion tensor imaging (DTI) to investigate whether structural connectivity in the 'reaching' circuit is associated to variations in the ability to control and update a movement. We induced a transient disruption of the neural processes underlying on-line motor adjustments by applying 1Hz rTMS over the mIPS. After the stimulation protocol, participants globally showed a reduction of the number of corrective trajectories during a reaching task that included unexpected visual perturbations. A voxel-based analysis revealed that participants exhibiting higher fractional anisotropy (FA) in the second branch of the superior longitudinal fasciculus (SLF II) suffered less rTMS-induced behavioral impact. These results indicate that the microstructural features of the white matter bundles within the parieto-frontal 'reaching' circuit play a prominent role when action reprogramming is interfered. Moreover, our study suggests that the structural alignment and cohesion of the white matter tracts might be used as a predictor to characterize the extent of motor impairments.
Resumo:
BACKGROUND: Low-dose, Visudyne®-mediated photodynamic therapy (photo-induction) was shown to selectively enhance tumor vessel transport causing increased uptake of systemically administered chemotherapy in various tumor types grown on rodent lungs. The present experiments explore the efficacy of photo-induced vessel modulation combined to intravenous (IV) liposomal cisplatin (Lipoplatin®) on rodent lung tumors and the feasibility/toxicity of this approach in porcine chest cavities. MATERIAL AND METHODS: Three groups of Fischer rats underwent orthotopic sarcoma (n = 14), mesothelioma (n = 14), or adenocarcinoma (n = 12) implantation on the left lung. Half of the animals of each group had photo-induction (0.0625 mg/kg Visudyne®, 10 J/cm(2) ) followed by IV administration of Lipoplatin® (5 mg/kg) and the other half received Lipoplatin® without photo-induction. Then, two groups of minipigs underwent intrapleural thoracoscopic (VATS) photo-induction (0.0625 mg/kg Visudyne®; 30 J/cm(2) hilum; 10 J/cm(2) apex/diaphragm) with in situ light dosimetry in combination with IV Lipoplatin® administration (5 mg/kg). Protocol I (n = 6) received Lipoplatin® immediately after light delivery and Protocol II (n = 9) 90 minutes before light delivery. Three additional animals received Lipoplatin® and VATS pleural biopsies but no photo-induction (controls). Lipoplatin® concentrations were analyzed in blood and tissues before and at regular intervals after photo-induction using inductively coupled plasma mass spectrometry. RESULTS: Photo-induction selectively increased Lipoplatin® uptake in all orthotopic tumors. It significantly increased the ratio of tumor to lung Lipoplatin® concentration in sarcoma (P = 0.0008) and adenocarcinoma (P = 0.01) but not in mesothelioma, compared to IV drug application alone. In minipigs, intrapleural photo-induction combined to systemic Lipoplatin® was well tolerated with no toxicity at 7 days for both treatment protocols. The pleural Lipoplatin® concentrations were not significantly different at 10 and 30 J/cm(2) locations but they were significantly higher in protocol I compared to II (2.37 ± 0.7 vs. 1.37 ± 0.7 ng/mg, P < 0.001). CONCLUSION: Visudyne®-mediated photo-induction selectively enhances the uptake of IV administered Lipoplatin® in rodent lung tumors. Intrapleural VATS photo-induction with identical treatment conditions combined to IV Lipoplatin chemotherapy is feasible and well tolerated in a porcine model. Lasers Surg. Med. 47:807-816, 2015. © 2015 Wiley Periodicals, Inc.