870 resultados para Lava™ Ultimate
Resumo:
The third episode of lava dome growth at Soufrière Hills Volcano began 1 August 2005 and ended 20 April 2007. Volumes of the dome and talus produced were measured using a photo-based method with a calibrated camera for increased accuracy. The total dense rock equivalent (DRE) volume of extruded andesite magma (306 ± 51 Mm3) was similar within error to that produced in the earlier episodes but the average extrusion rate was 5.6 ± 0.9 m3s−1 (DRE), higher than the previous episodes. Extrusion rates varied in a pulsatory manner from <0.5 m3s−1 to ∼20 m3s−1. On 18 May 2006, the lava dome had reached a volume of 85 Mm3 DRE and it was removed in its entirety during a massive dome collapse on 20 May 2006. Extrusion began again almost immediately and built a dome of 170 Mm3 DRE with a summit height 1047 m above sea level by 4 April 2007. There were few moderate-sized dome collapses (1–10 Mm3) during this extrusive episode in contrast to the first episode of dome growth in 1995–8 when they were numerous. The first and third episodes of dome growth showed a similar pattern of low (<0.5 m3s−1) but increasing magma flux during the early stages, with steady high flux after extrusion of ∼25 Mm3
Resumo:
The formation of a lava dome involves fractionation of the lava into core and clastic components. We show that for three separate, successive andesitic lava domes that grew at Soufrière Hills volcano, Montserrat, between 1999 and 2007, the volumetric proportion of the lava converted to talus or pyroclastic flow deposits was 50%–90% of the lava extruded. Currently, only 8% of the total magma extruded during the 1995–2007 eruption remains as core lava. The equivalent representation in the geological record will probably be even lower. Most of the lava extruded at the surface flowed no further than 150–300 m from the vent before disaggregation, resulting in a lava core whose shape tends to a cylinder. Moderate to high extrusion rates at the Soufrière Hills domes may have contributed to the large clastic fraction observed. Creating talus dissipates much of the energy that would otherwise be stored in the core lava of domes. The extreme hazards from large pyroclastic flows and blasts posed by wholesale collapse of a lava dome depend largely on the size of the lava core, and hence on the aggregate history of the partitioning process, not on the size of the dome.
Resumo:
We have applied time series analytical techniques to the flux of lava from an extrusive eruption. Tilt data acting as a proxy for flux are used in a case study of the May–August 1997 period of the eruption at Soufrière Hills Volcano, Montserrat. We justify the use of such a proxy by simple calibratory arguments. Three techniques of time series analysis are employed: spectral, spectrogram and wavelet methods. In addition to the well-known ~9-hour periodicity shown by these data, a previously unknown periodic flux variability is revealed by the wavelet analysis as a 3-day cycle of frequency modulation during June–July 1997, though the physical mechanism responsible is not clear. Such time series analysis has potential for other lava flux proxies at other types of volcanoes.
Resumo:
Lava domes comprise core, carapace, and clastic talus components. They can grow endogenously by inflation of a core and/or exogenously with the extrusion of shear bounded lobes and whaleback lobes at the surface. Internal structure is paramount in determining the extent to which lava dome growth evolves stably, or conversely the propensity for collapse. The more core lava that exists within a dome, in both relative and absolute terms, the more explosive energy is available, both for large pyroclastic flows following collapse and in particular for lateral blast events following very rapid removal of lateral support to the dome. Knowledge of the location of the core lava within the dome is also relevant for hazard assessment purposes. A spreading toe, or lobe of core lava, over a talus substrate may be both relatively unstable and likely to accelerate to more violent activity during the early phases of a retrogressive collapse. Soufrière Hills Volcano, Montserrat has been erupting since 1995 and has produced numerous lava domes that have undergone repeated collapse events. We consider one continuous dome growth period, from August 2005 to May 2006 that resulted in a dome collapse event on 20th May 2006. The collapse event lasted 3 h, removing the whole dome plus dome remnants from a previous growth period in an unusually violent and rapid collapse event. We use an axisymmetrical computational Finite Element Method model for the growth and evolution of a lava dome. Our model comprises evolving core, carapace and talus components based on axisymmetrical endogenous dome growth, which permits us to model the interface between talus and core. Despite explicitly only modelling axisymmetrical endogenous dome growth our core–talus model simulates many of the observed growth characteristics of the 2005–2006 SHV lava dome well. Further, it is possible for our simulations to replicate large-scale exogenous characteristics when a considerable volume of talus has accumulated around the lower flanks of the dome. Model results suggest that dome core can override talus within a growing dome, potentially generating a region of significant weakness and a potential locus for collapse initiation.
Resumo:
During many lava dome-forming eruptions, persistent rockfalls and the concurrent development of a substantial talus apron around the foot of the dome are important aspects of the observed activity. An improved understanding of internal dome structure, including the shape and internal boundaries of the talus apron, is critical for determining when a lava dome is poised for a major collapse and how this collapse might ensue. We consider a period of lava dome growth at the Soufrière Hills Volcano, Montserrat, from August 2005 to May 2006, during which a 100 × 106 m3 lava dome developed that culminated in a major dome-collapse event on 20 May 2006. We use an axi-symmetrical Finite Element Method model to simulate the growth and evolution of the lava dome, including the development of the talus apron. We first test the generic behaviour of this continuum model, which has core lava and carapace/talus components. Our model describes the generation rate of talus, including its spatial and temporal variation, as well as its post-generation deformation, which is important for an improved understanding of the internal configuration and structure of the dome. We then use our model to simulate the 2005 to 2006 Soufrière Hills dome growth using measured dome volumes and extrusion rates to drive the model and generate the evolving configuration of the dome core and carapace/talus domains. The evolution of the model is compared with the observed rockfall seismicity using event counts and seismic energy parameters, which are used here as a measure of rockfall intensity and hence a first-order proxy for volumes. The range of model-derived volume increments of talus aggraded to the talus slope per recorded rockfall event, approximately 3 × 103–13 × 103 m3 per rockfall, is high with respect to estimates based on observed events. From this, it is inferred that some of the volumetric growth of the talus apron (perhaps up to 60–70%) might have occurred in the form of aseismic deformation of the talus, forced by an internal, laterally spreading core. Talus apron growth by this mechanism has not previously been identified, and this suggests that the core, hosting hot gas-rich lava, could have a greater lateral extent than previously considered.
Resumo:
We have performed the first completely ab initio lattice dynamics calculation of the full orthorhombic cell of polyethylene using periodic density functional theory in the local density approximation (LDA) and the generalized gradient approximation (GGA). Contrary to current perceptions, we show that LDA accurately describes the structure whereas GGA fails. We emphasize that there is no parametrization of the results. We then rigorously tested our calculation by computing the phonon dispersion curves across the entire Brillouin zone and comparing them to the vibrational spectra, in particular the inelastic neutron scattering (INS) spectra, of polyethylene (both polycrystalline and aligned) and perdeuteriopolyethylene. The F-point frequencies (where the infrared and Raman active modes occur) are in good agreement with the latest low temperature data. The near-perfect reproduction of the INS spectra, gives confidence in the results and allows Lis to deduce a number of physical properties including the elastic moduli, parallel and perpendicular to the chain. We find that the Young's modulus for an infinitely long, perfectly crystalline polyethylene is 360.2 GPa at 0 K. The highest experimental value is 324 GPa, indicating that current high modulus fibers are similar to 90% of their maximum possible strength.
Resumo:
Lava dome eruptions are sometimes characterised by large periodic fluctuations in extrusion rate over periods of hours that may be accompanied by Vulcanian explosions and pyroclastic flows. We consider a simple system of nonlinear equations describing a 1D flow of lava extrusion through a deep elastic dyke feeding a shallower cylindrical conduit in order to simulate this short-period cyclicity. Stick-slip conditions depending on a critical shear stress are assumed at the wall boundary of the cylindrical conduit. By analogy with the behaviour of industrial polymers in a plastic extruder, the elastic dyke acts like a barrel and the shallower cylindrical portion of the conduit as a die for the flow of magma acting as a polymer. When we applied the model to the Soufrière Hills Volcano, Montserrat, for which the key parameters have been evaluated from previous studies, cyclic extrusions with periods from 3 to 30 h were readily simulated, matching observations. The model also reproduces the reduced period of cycles observed when a major unloading event occurs due to lava dome collapse.
Resumo:
Using a time series of TerraSAR-X spaceborne radar images we have measured the pulsatory motion of an andesite lava flow over a 14-month period at Bagana volcano, Papua New Guinea. Between October 2010 and December 2011, lava flowed continuously down the western flank of the volcano forming a 3 km-long blocky lava flow with a channel, levees, overflows and branches. We captured four successive pulses of lava advancing down the channel system, the first such behaviour of an andesite flow to be recorded using radar. Each pulse had a volume of the order of 107 m3 emplaced over many weeks. The average extrusion rate estimated from the radar data was 0.92 ± 0.35 m3 s-1 , and varied between 0.3 and 1.8 m3 s-1, with higher rates occurring earlier in each pulse. This, together with observations of sulphur dioxide emissions, explosions and incandescence suggest a variable supply rate of magma through Bagana’s conduit as the most likely source of the pulsatory behaviour.