981 resultados para Lattice


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloid of palladium nanoparticles has been prepared by the Solvated Metal Atom Dispersion (SMAD) method. Reaction of Pd(0) nanopowder obtained upon precipitation from the colloid, with ammonia borane (H3N center dot BH3, AB) in aqueous solutions at room temperature results in the generation of active hydrogen atoms. The active hydrogen atoms either combine with one another resulting in H-2 evolution or diffuse into the Pd lattice to afford PdHx. Diffusion of hydrogen atoms leads to an expansion of the Pd lattice. The diffused hydrogen atoms are distributed uniformly over the entire particle. These features were established using powder XRD and electron microscopy studies. The H-1 NMR spectral studies of PdHx before and after desorption of H-2 revealed that the hydrogen atoms trapped inside Pd lattice are hydridic in nature. Desorption of hydrogen from PdHx did not result in complete reversibility suggesting that some hydrogen atoms are strongly trapped inside the Pd lattice. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two distinct ferromagnetic phases of LaMn0.5Co0.5O3 having monoclinic structure with distinct physical properties have been studied. The ferromagnetic ordering temperature T-c is found to be different for both the phases. The origin of such contrasting characteristics is assigned to the changes in the distance(s) and angle(s) between Mn-O-Co resulting from distortions observed from neutron diffraction studies. Investigations on the temperature dependent Raman spectroscopy provide evidence for such structural characteristics, which affects the exchange interaction. The difference in B-site ordering which is evident from the neutron diffraction is also responsible for the difference in T-c. Raman scattering suggests the presence of spin-phonon coupling for both the phases around the T-c. Electrical transport properties of both the phases have been investigated based on the lattice distortion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of high-quality tin monosulphide (SnS) layers is one of the crucial tasks in the fabrication of efficient SnS-based optoelectronic devices. Reduction of strain between film and the substrate by using an appropriate lattice-matched (LM) substrate is a new attempt for the growth of high-quality layers. In this view, the SnS films were deposited on LM Al substrate using the thermal evaporation technique with a low rate of evaporation. The as-grown SnS films were characterized using appropriate techniques and the obtained results are discussed by comparing them with the properties of SnS films grown on amorphous substrate under the same conditions. From structural analysis of the films, it is noticed that the SnS films deposited on amorphous substrate have crystallites that were oriented along different directions. However, the SnS crystallites grown on Al substrate exhibited epitaxial growth along the 101] direction. Photoluminescence (PL) and Raman studies reveal that the films grown on Al substrate have better optical properties than those of the films grown on amorphous substrates. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Random walks describe diffusion processes, where movement at every time step is restricted to only the neighboring locations. We construct a quantum random walk algorithm, based on discretization of the Dirac evolution operator inspired by staggered lattice fermions. We use it to investigate the spatial search problem, that is, to find a marked vertex on a d-dimensional hypercubic lattice. The restriction on movement hardly matters for d > 2, and scaling behavior close to Grover's optimal algorithm (which has no restriction on movement) can be achieved. Using numerical simulations, we optimize the proportionality constants of the scaling behavior, and demonstrate the approach to that for Grover's algorithm (equivalent to the mean-field theory or the d -> infinity limit). In particular, the scaling behavior for d = 3 is only about 25% higher than the optimal d -> infinity value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the spatial search problem on the two-dimensional square lattice, using the Dirac evolution operator discretized according to the staggered lattice fermion formalism. d = 2 is the critical dimension for the spatial search problem, where infrared divergence of the evolution operator leads to logarithmic factors in the scaling behavior. As a result, the construction used in our accompanying article A. Patel and M. A. Rahaman, Phys. Rev. A 82, 032330 (2010)] provides an O(root N ln N) algorithm, which is not optimal. The scaling behavior can be improved to O(root N ln N) by cleverly controlling the massless Dirac evolution operator by an ancilla qubit, as proposed by Tulsi Phys. Rev. A 78, 012310 (2008)]. We reinterpret the ancilla control as introduction of an effective mass at the marked vertex, and optimize the proportionality constants of the scaling behavior of the algorithm by numerically tuning the parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ground-state properties of the spin-(1/2 Heisenberg antiferromagnet on a square lattice are studied by using a simple variational wave function that interpolates continuously between the Néel state and short-range resonating-valence-bond states. Exact calculations of the variational energy for small systems show that the state with the lowest energy has long-range antiferromagnetic order. The staggered magnetization in this state is approximately 70% of its maximum possible value. The variational estimate of the ground-state energy is substantially lower than the value obtained for the nearest-neighbor resonating-valence-bond wave function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the string tension and 0++ and 2++ glueball masses in pure gauge QCD using an improved lattice action. We compare various smearing methods, and find that the best glueball signal is obtained using smeared Wilson loops of a size of about 0.5 fm. Our results for mass ratios m0++/√σ=3.5(3) and m2++/m0++=1.6(2) are consistent with those computed with the simple plaquette action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the results of an extensive mean-field investigation of the half-filled Hubbard model on a triangular lattice at zero temperature. At intermediate U we find a first-order metal-insulator transition from an incommensurate spiral magnetic metal to a semiconducting state with a commensurate linear spin density wave ordering stabilized by the competition between the kinetic energy and the frustrated nature of the magnetic interaction. At large U the ground state is that of a classical triangular antiferromagnet within our approximation. In the incommensurate spiral metallic phase the Fermi surface has parts in which the wave function renormalization Z is extremely small. The evolution of the Fermi surface and the broadening of the quasi-particle band along with the variation of the plasma frequency and a charge stiffness constant with U/t are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a variety of physical implications of a mean-field theory for spiral spin-density-wave states in the square-lattice Hubbard model for small deviations from half filling. The phase diagram with the paramagnetic metal, two spiral (semimetallic) states, and ferromagnet is calculated. The momentum distribution function and the (quasiparticle) density of states are discussed. There is a significant broadening of the quasiparticle bands when the antiferromagnetic insulator is doped. The evolution of the Fermi surface and the variation of the plasma frequency and a charge-stiffness constant with U/t and δ are calculated. The connection to results based on the Schwinger-boson-slave-fermion formalism is made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We obtain metal-insulator phase diagrams at half-filling for the five-band extended Hubbard model of the square-planar CuO2 lattice treated within a Hartree-Fock mean-field approximation, allowing for spiral spin-density waves. We indicate the existence of an insulating phase (covalent insulator) characterized by strong covalency effects, not identified in the earlier Zaanen-Sawatzky-Allen phase diagram. While the insulating phase is always antiferromagnetic, we also obtain an antiferromagnetic metallic phase for a certain range of interaction parameters. Performing a nonperturbative calculation of J(eff), the in-plane antiferromagnetic interaction is presented as a function of the parameters in the model. We also calculate the band gap and magnetic moments at various sites and discuss critically the contrasting interpretation of the electronic structure of high-T(c) materials arising from photoemission and neutron-scattering experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several recent theoretical and computer simulation studies have considered solvation dynamics in a Brownian dipolar lattice which provides a simple model solvent for which detailed calculations can be carried out. In this article a fully microscopic calculation of the solvation dynamics of an ion in a Brownian dipolar lattice is presented. The calculation is based on the non‐Markovian molecular hydrodynamic theory developed recently. The main assumption of the present calculation is that the two‐particle orientational correlation functions of the solid can be replaced by those of the liquid state. It is shown that such a calculation provides an excellent agreement with the computer simulation results. More importantly, the present calculations clearly demonstrate that the frequency‐dependent dielectric friction plays an important role in the long time decay of the solvation time correlation function. We also find that the present calculation provides somewhat better agreement than either the dynamic mean spherical approximation (DMSA) or the Fried–Mukamel theory which use the simulated frequency‐dependent dielectric function. It is found that the dissipative kernels used in the molecular hydrodynamic approach and in the Fried–Mukamel theory are vastly different, especially at short times. However, in spite of this disagreement, the two theories still lead to comparable results in good agreement with computer simulation, which suggests that even a semiquantitatively accurate dissipative kernel may be sufficient to obtain a reliable solvation time correlation function. A new wave vector and frequency‐dependent dissipative kernel (or memory function) is proposed which correctly goes over to the appropriate expressions in both the single particle and the collective limits. This form is expected to lead to better results than all the existing descriptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-band extended Hubbard model studies show that the shift in optical gap of the metal-halogen (MX) chain upon embedding in a crystalline environment depends upon alternation in the site-diagonal electron-lattice interaction parameter (epsilon(M)) and the strength of electron-electron interactions at the metal site (U(M)). The equilibrium geometry studies on isolated chains show that the MX chains tend to distort for alternating epsilon(M) and small U(M) values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the exact solution to a one-dimensional multicomponent quantum lattice model interacting by an exchange operator which falls off as the inverse sinh square of the distance. This interaction contains a variable range as a parameter and can thus interpolate between the known solutions for the nearest-neighbor chain and the inverse-square chain. The energy, susceptibility, charge stiffness, and the dispersion relations for low-lying excitations are explicitly calculated for the absolute ground state, as a function of both the range of the interaction and the number of species of fermions.