914 resultados para Lateral septum


Relevância:

20.00% 20.00%

Publicador:

Resumo:

When used as floor joists, the new mono-symmetric LiteSteel beam (LSB) sections require web openings to provide access for inspections and various services. The LSBs consist of two rectangular hollow flanges connected by a slender web, and are subjected to lateral distortional buckling effects in the intermediate span range. Their member capacity design formulae developed to date are based on their elastic lateral buckling moments, and only limited research has been undertaken to predict the elastic lateral buckling moments of LSBs with web openings. This paper addresses this research gap by reporting the development of web opening modelling techniques based on an equivalent reduced web thickness concept and a numerical method for predicting the elastic buckling moments of LSBs with circular web openings. The proposed numerical method was based on a formulation of the total potential energy of LSBs with circular web openings. The accuracy of the proposed method’s use with the aforementioned modelling techniques was verified through comparison of its results with those of finite strip and finite element analyses of various LSBs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel beams are increasingly used as floor joists and bearers in buildings. Their behaviour and moment capacities are influenced by lateral-torsional buckling when they are not laterally restrained adequately. Past research on lateral-torsional buckling has concentrated on hot-rolled steel beams. Hence a numerical study was undertaken to investigate the lateral-torsional buckling behaviour of simply supported cold-formed steel lipped channel beams subjected to uniform bending. For this purpose a finite element model was developed using ABAQUS and its accuracy was verified using available numerical and experimental results. It was then used in a detailed parametric study to simulate the lateral-torsional buckling behaviour and capacity of cold-formed steel beams under varying conditions. The moment capacity results were compared with the predictions from the current design rules in many cold-formed steel codes and suitable recommendations were made. European design rules were found to be conservative while Australian/New Zealand and North American design rules were unconservative. Hence the moment capacity design equations in these codes were modified in this paper based on the available finite element analysis results. This paper presents the details of the parametric study, recommendations to current design rules and the new design rules proposed in this research for lateral-torsional buckling of cold-formed steel lipped channel beams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LiteSteel Beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using its patented dual electric resistance welding and automated continuous roll-forming technologies. The LSB has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. Its flexural strength for intermediate spans is governed by lateral distortional buckling characterised by simultaneous lateral deflection, twist and web distortion. Recent research on LSBs has mainly focussed on their lateral distortional buckling behaviour under uniform moment conditions. However, in practice, LSB flexural members are subjected to non-uniform moment distributions and load height effects as they are often under transverse loads applied above or below their shear centre. These loading conditions are known to have significant effects on the lateral buckling strength of beams. Many steel design codes have adopted equivalent uniform moment distribution and load height factors based on data for conventional hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. The non-uniform moment distribution and load height effects of transverse loading on cantilever LSBs, and the suitability of the current design modification factors to include such effects are not known. This paper presents a numerical study based on finite element analyses of the elastic lateral buckling strength of cantilever LSBs subject to transverse loading, and the results. The applicability of the design modification factors from various steel design codes was reviewed, and suitable recommendations are presented for cantilever LSBs subject to transverse loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of cold-formed steel members as structural columns and beams in residential, industrial and commercial buildings has increased significantly in recent times. This study is focused on the use of cold-formed steel sections as flexural members subject to lateral-torsional buckling. For this purpose a finite element model of a simply supported lipped channel beam under uniform bending was developed, validated using available numerical and experimental results, and used in a detailed parametric study. The moment capacity results were then compared with the predictions from the current ambient temperature design rules in the cold-formed steel structures codes of Australia, New Zealand, North America and Europe. European design rules were found to be conservative while Australian and American design rules were unsafe. This paper presents the results of the numerical study, the comparison with the current design rules and the new proposed design rules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: This paper presents the details of a study into the behaviour and moment capacities of cold-formed steel lipped channel beams (LCB) subject to lateral-torsional buckling at elevated temperatures. It was based on a validated numerical model of a simply supported and laterally unrestrained LCB subjected to a uniform moment. The ultimate moment capacities from this study were compared with the predicted values using ambient and fire design methods. This study showed that the lateral torsional buckling capacity is strongly influenced by the level of non-linearity in the stress-strain curves of steel at elevated temperatures. Hence most of the current design methods based on a single buckling curve were not adequate to determine the moment capacities. This paper proposes a new design method for the cold-formed steel LCBs subject lateral-torsional buckling at elevated temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Daring human nature has already led to the construction of high-rise buildings in naturally challenging geological regions and in worse environments of the world. However; literature review divulges that there is a lag in research of certain generic principles and rules for the prediction of lateral movement in multistorey construction. The present competitive trend orders the best possible used of available construction material and resources. Hence; the mixed used of reinforced concrete with structural steel is gaining prevalence day by day. This paper investigates the effects of Seismic load on composite multistorey building provided with core wall and trusses through FEM modelling. The results showed that increased rigidity corresponds to lower period of vibration and hence higher seismic forces. Since Seismic action is a function of mass and response acceleration, therefore; mass increment generate higher earthquake load and thus cause higher impact base shear and overturning movement. Whereas; wind force depends on building exposed, larger the plan dimension greater is the wind impact. Nonetheless; outriggers trusses noticeably contribute, in improving the serviceability of structure subjected to wind and earthquake forces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To use our Bayesian method of motor unit number estimation (MUNE) to evaluate lower motor neuron degeneration in ALS. Methods: In subjects with ALS we performed serial MUNE studies. We examined the repeatability of the test and then determined whether the loss of MUs was fitted by an exponential or Weibull distribution. Results: The decline in motor unit (MU) numbers was well-fitted by an exponential decay curve. We calculated the half life of MUs in the abductor digiti minimi (ADM), abductor pollicis brevis (APB) and/or extensor digitorum brevis (EDB) muscles. The mean half life of the MUs of ADM muscle was greater than those of the APB or EDB muscles. The half-life of MUs was less in the ADM muscle of subjects with upper limb than in those with lower limb onset. Conclusions: The rate of loss of lower motor neurons in ALS is exponential, the motor units of the APB decay more quickly than those of the ADM muscle and the rate of loss of motor units is greater at the site of onset of disease. Significance: This shows that the Bayesian MUNE method is useful in following the course and exploring the clinical features of ALS. 2012 International Federation of Clinical Neurophysiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular cartilage defects are common after joint injuries. When left untreated, the biomechanical protective function of cartilage is gradually lost, making the joint more susceptible to further damage, causing progressive loss of joint function and eventually osteoarthritis (OA). In the process of translating promising tissue-engineering cartilage repair approaches from bench to bedside, pre-clinical animal models including mice, rabbits, goats, and horses, are widely used. The equine species is becoming an increasingly popular model for the in vivo evaluation of regenerative orthopaedic approaches. As there is also an increasing body of evidence suggesting that successful lasting tissue reconstruction requires an implant that mimics natural tissue organization, it is imperative that depth-dependent characteristics of equine osteochondral tissue are known, to assess to what extent they resemble those in humans. Therefore, osteochondral cores (4-8 mm) were obtained from the medial and lateral femoral condyles of equine and human donors. Cores were processed for histology and for biochemical quantification of DNA, glycosaminoglycan (GAG) and collagen content. Equine and human osteochondral tissues possess similar geometrical (thickness) and organizational (GAG, collagen and DNA distribution with depth) features. These comparable trends further underscore the validity of the equine model for the evaluation of regenerative approaches for articular cartilage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Stromal signalling increases the lateral cell adhesions of prostate epithelial cells grown in 3D culture. The aim of this study was to use microarray analysis to identify significant epithelial signalling pathways and genes in this process. METHODS: Microarray analysis was used to identify genes that were differentially expressed when epithelial cells were grown in 3D Matrigel culture with stromal co-culture compared to without stroma. Two culture models were employed: primary epithelial cells (ten samples) and an epithelial cell line (three experiments). A separate microarray analysis was performed on each model system and then compared to identify tissue-relevant genes in a cell line model. RESULTS: TGF beta signalling was significantly ranked for both model systems and in both models the TGF beta signalling gene SOX4 was significantly down regulated. Analysis of all differentially expressed genes to identify genes that were common to both models found several morphology related gene clusters; actin binding (DIAPH2, FHOD3, ABLIM1, TMOD4, MYH10), GTPase activator activity (BCR, MYH10), cytoskeleton (MAP2, MYH10, TMOD4, FHOD3), protein binding (ITGA6, CD44), proteinaceous extracellular matrix (NID2, CILP2), ion channel/ ion transporter activity (CACNA1C, CACNB2, KCNH2, SLC8A1, SLC39A9) and genes associated with developmental pathways (POFUT1, FZD2, HOXA5, IRX2, FGF11, SOX4, SMARCC1). CONCLUSIONS: In 3D prostate cultures, stromal cells increase lateral epithelial cell adhesions. We show that this morphological effect is associated with gene expression changes to TGF beta signalling, cytoskeleton and anion activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Cell shape and tissue architecture are controlled by changes to junctional proteins and the cytoskeleton. How tissues control the dynamics of adhesion and cytoskeletal tension is unclear. We have studied epithelial tissue architecture using 3D culture models and found that adult primary prostate epithelial cells grow into hollow acinus-like spheroids. Importantly, when co-cultured with stroma the epithelia show increased lateral cell adhesions. To investigate this mechanism further we aimed to: identify a cell line model to allow repeatable and robust experiments; determine whether or not epithelial adhesion molecules were affected by stromal culture; and determine which stromal signalling molecules may influence cell adhesion in 3D epithelial cell cultures. METHODOLOGY/PRINCIPAL FINDINGS: The prostate cell line, BPH-1, showed increased lateral cell adhesion in response to stroma, when grown as 3D spheroids. Electron microscopy showed that 9.4% of lateral membranes were within 20 nm of each other and that this increased to 54% in the presence of stroma, after 7 days in culture. Stromal signalling did not influence E-cadherin or desmosome RNA or protein expression, but increased E-cadherin/actin co-localisation on the basolateral membranes, and decreased paracellular permeability. Microarray analysis identified several growth factors and pathways that were differentially expressed in stroma in response to 3D epithelial culture. The upregulated growth factors TGFβ2, CXCL12 and FGF10 were selected for further analysis because of previous associations with morphology. Small molecule inhibition of TGFβ2 signalling but not of CXCL12 and FGF10 signalling led to a decrease in actin and E-cadherin co-localisation and increased paracellular permeability. CONCLUSIONS/SIGNIFICANCE: In 3D culture models, paracrine stromal signals increase epithelial cell adhesion via adhesion/cytoskeleton interactions and TGFβ2-dependent mechanisms may play a key role. These findings indicate a role for stroma in maintaining adult epithelial tissue morphology and integrity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel beams are increasingly used as floor joists and bearers in buildings and often their behaviour and moment capacities are influenced by lateral-torsional buckling. With increasing usage of cold-formed steel beams their fire safety design has become an important issue. Fire design rules are commonly based on past research on hot-rolled steel beams. Hence a detailed parametric study was undertaken using validated finite element models to investigate the lateral-torsional buckling behaviour of simply supported cold-formed steel lipped channel beams subjected to uniform bending at uniform elevated temperatures. The moment capacity results were compared with the predictions from the available ambient temperature and fire design rules and suitable recommendations were made. European fire design rules were found to be over-conservative while the ambient temperature design rules could not be used based on single buckling curve. Hence a new design method was proposed that includes the important non-linear stress-strain characteristics observed for cold-formed steels at elevated temperatures. Comparison with numerical moment capacities demonstrated the accuracy of the new design method. This paper presents the details of the parametric study, comparisons with current design rules and the new design rules proposed in this research for lateral-torsional buckling of cold-formed steel lipped channel beams at elevated temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone for the assessment of osteoporosis follows a parabolic-type dependence with bone volume fraction; having minima values corresponding to both entire bone and entire marrow. Langton has recently proposed that the primary BUA mechanism may be significant phase interference due to variations in propagation transit time through the test sample as detected over the phase-sensitive surface of the receive ultrasound transducer. This fundamentally simple concept assumes that the propagation of ultrasound through a complex solid : liquid composite sample such as cancellous bone may be considered by an array of parallel ‘sonic rays’. The transit time of each ray is defined by the proportion of bone and marrow propagated, being a minimum (tmin) solely through bone and a maximum (tmax) solely through marrow. A Transit Time Spectrum (TTS), ranging from tmin to tmax, may be defined describing the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit time over the surface of the receive ultrasound transducer. Phase interference may result from interaction of ‘sonic rays’ of differing transit times. The aim of this study was to test the hypothesis that there is a dependence of phase interference upon the lateral inhomogenity of transit time by comparing experimental measurements and computer simulation predictions of ultrasound propagation through a range of relatively simplistic solid:liquid models exhibiting a range of lateral inhomogeneities. Methods: A range of test models was manufactured using acrylic and water as surrogates for bone and marrow respectively. The models varied in thickness in one dimension normal to the direction of propagation, hence exhibiting a range of transit time lateral inhomogeneities, ranging from minimal (single transit time) to maximal (wedge; ultimately the limiting case where each sonic ray has a unique transit time). For the experimental component of the study, two unfocused 1 MHz ¾” broadband diameter transducers were utilized in transmission mode; ultrasound signals were recorded for each of the models. The computer simulation was performed with Matlab, where the transit time and relative amplitude of each sonic ray was calculated. The transit time for each sonic ray was defined as the sum of transit times through acrylic and water components. The relative amplitude considered the reception area for each sonic ray along with absorption in the acrylic. To replicate phase-sensitive detection, all sonic rays were summed and the output signal plotted in comparison with the experimentally derived output signal. Results: From qualtitative and quantitative comparison of the experimental and computer simulation results, there is an extremely high degree of agreement of 94.2% to 99.0% between the two approaches, supporting the concept that propagation of an ultrasound wave, for the models considered, may be approximated by a parallel sonic ray model where the transit time of each ray is defined by the proportion of ‘bone’ and ‘marrow’. Conclusions: This combined experimental and computer simulation study has successfully demonstrated that lateral inhomogeneity of transit time has significant potential for phase interference to occur if a phase-sensitive ultrasound receive transducer is implemented as in most commercial ultrasound bone analysis devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a numerical study on the response of axially loaded slender square concrete filled steel tube (CFST) columns under low velocity lateral impact loading. A finite element analysis (FEA) model was developed using the explicit dynamic nonlinear finite element code LS -DYNA in which the strain rate effects of both steel and concrete, contact between steel tube and concrete and confinement effect provided by the steel tube for the concrete were considered. The model also benefited from a relatively recent feature of LS-DYNA for applying a pre-loading in the explicit solver. The developed numerical model was verified for its accuracy and adequacy by comparing the results with experimental results available in the literature. The verified model was then employed to conduct a parametric study to investigate the influence of axial load level, impact location, support conditions, and slenderness ratio on the response of the CFST columns. A good agreement between the numerical and experimental results was achieved. The model could reasonably predict the impact load-deflection history and deformed shape of the column at the end of the impact event. The results of the parametric study showed that whilst impact location, axial load level and slenderness ratio can have a significant effect on the peak impact force, residual lateral deflection and maximum lateral deflection, the influence of support fixity is minimal. With an increase of axial load to up to a certain level, the peak force increases; however, a further increase in the axial load causes a decrease in the peak force. Both residual lateral deflection and maximum lateral deflection increase as axial load level increases. Shifting the impact location towards the supports increases the peak force and reduces both residual and maximum lateral deflections. A rise in slenderness ratio decreases the peak force and increases the residual and maximum lateral deflections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individual variability in the acquisition, consolidation and extinction of conditioned fear potentially contributes to the development of fear pathology including posttraumatic stress disorder (PTSD). Pavlovian fear conditioning is a key tool for the study of fundamental aspects of fear learning. Here, we used a selected mouse line of High and Low Pavlovian conditioned fear created from an advanced intercrossed line (AIL) in order to begin to identify the cellular basis of phenotypic divergence in Pavlovian fear conditioning. We investigated whether phosphorylated MAPK (p44/42 ERK/MAPK), a protein kinase required in the amygdala for the acquisition and consolidation of Pavlovian fear memory, is differentially expressed following Pavlovian fear learning in the High and Low fear lines. We found that following Pavlovian auditory fear conditioning, High and Low line mice differ in the number of pMAPK-expressing neurons in the dorsal sub nucleus of the lateral amygdala (LAd). In contrast, this difference was not detected in the ventral medial (LAvm) or ventral lateral (LAvl) amygdala sub nuclei or in control animals. We propose that this apparent increase in plasticity at a known locus of fear memory acquisition and consolidation relates to intrinsic differences between the two fear phenotypes. These data provide important insights into the micronetwork mechanisms encoding phenotypic differences in fear. Understanding the circuit level cellular and molecular mechanisms that underlie individual variability in fear learning is critical for the development of effective treatment of fear-related illnesses such as PTSD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key question in neuroscience is how memory is selectively allocated to neural networks in the brain. This question remains a significant research challenge, in both rodent models and humans alike, because of the inherent difficulty in tracking and deciphering large, highly dimensional neuronal ensembles that support memory (i.e., the engram). In a previous study we showed that consolidation of a new fear memory is allocated to a common topography of amygdala neurons. When a consolidated memory is retrieved, it may enter a labile state, requiring reconsolidation for it to persist. What is not known is whether the original spatial allocation of a consolidated memory changes during reconsolidation. Knowledge about the spatial allocation of a memory, during consolidation and reconsolidation, provides fundamental insight into its core physical structure (i.e., the engram). Using design-based stereology, we operationally define reconsolidation by showing a nearly identical quantity of neurons in the dorsolateral amygdala (LAd) that expressed a plasticity-related protein, phosphorylated mitogen-activated protein kinase, following both memory acquisition and retrieval. Next, we confirm that Pavlovian fear conditioning recruits a stable, topographically organized population of activated neurons in the LAd. When the stored fear memory was briefly reactivated in the presence of the relevant conditioned stimulus, a similar topography of activated neurons was uncovered. In addition, we found evidence for activated neurons allocated to new regions of the LAd. These findings provide the first insight into the spatial allocation of a fear engram in the LAd, during its consolidation and reconsolidation phase.