963 resultados para Latent Inhibition Model


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Huit cent trente et un troupeaux de vaches laitières répartis dans 5 états américains ont été enrôlés dans une étude de cohorte prospective. Un modèle d’équations d'estimation généralisées a été utilisé pour étudier l'association entre les signes cliniques et la détection de salmonelles dans les fèces des animaux soupçonnés de salmonellose clinique. La sensibilité et la spécificité de la culture bactériologique ont été estimées à l’aide d’un modèle de classes latentes. Dix-huit pour cent des 874 échantillons provenant de veaux et 29% des 1479 échantillons de vaches adultes étaient positifs pour Salmonella spp. Il n’a pas été possible d’établir une association claire entre les différents signes cliniques observés et la détection de salmonelles. Les 2 sérotypes les plus fréquemment isolés étaient Typhimurium et Newport. La probabilité de détecter des salmonelles était plus élevée chez les veaux où un autre agent entéropathogène était également détecté. La proportion d’échantillons positifs était plus élevée parmi les vaches ayant reçu des antibiotiques dans les jours précédant l’échantillonnage. La sensibilité de la culture a été estimée à 0,48 (intervalle de crédibilité à 95% [ICr95%]: 0,22-0,95) pour les veaux et 0,78 (ICr95%: 0,55-0,99) pour les vaches. La spécificité de la culture était de 0,94 (ICr95%: 0,87-1,00) pour les veaux et de 0,96 (ICr95%: 0,90-1,00) pour les vaches. Malgré une sensibilité imparfaite, la culture bactériologique demeure utile pour obtenir une meilleure estimation de la probabilité post-test de salmonellose clinique chez un bovin laitier, par rapport à la probabilité estimée suite au seul examen clinique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La mammite subclinique est un problème de santé fréquent et coûteux. Les infections intra-mammaires (IIM) sont souvent détectées à l’aide de mesures du comptage des cellules somatiques (CCS). La culture bactériologique du lait est cependant requise afin d’identifier le pathogène en cause. À cause de cette difficulté, pratiquement toutes les recherches sur la mammite subclinique ont été centrées sur la prévalence d’IIM et les facteurs de risque pour l’incidence ou l’élimination des IIM sont peu connus. L’objectif principal de cette thèse était d’identifier les facteurs de risque modifiables associés à l’incidence, l’élimination et la prévalence d’IIM d’importance dans les troupeaux laitiers Canadiens. En premier lieu, une revue systématique de la littérature sur les associations entre pratiques utilisées à la ferme et CCS a été réalisée. Les pratiques de gestion constamment associées au CCS ont été identifiées et différentiées de celles faisant l’objet de rapports anecdotiques. Par la suite, un questionnaire bilingue a été développé, validé, et utilisé afin de mesurer les pratiques de gestion d’un échantillon de 90 troupeaux laitiers canadiens. Afin de valider l’outil, des mesures de répétabilité et de validité des items composant le questionnaire ont été analysées et une évaluation de l’équivalence des versions anglaise et française a été réalisée. Ces analyses ont permis d’identifier des items problématiques qui ont du être recatégorisés, lorsque possible, ou exclus des analyses subséquentes pour assurer une certaine qualité des données. La plupart des troupeaux étudiés utilisaient déjà la désinfection post-traite des trayons et le traitement universel des vaches au tarissement, mais beaucoup des pratiques recommandées n’étaient que peu utilisées. Ensuite, les facteurs de risque modifiables associés à l’incidence, à l’élimination et à la prévalence d’IIM à Staphylococcus aureus ont été investigués de manière longitudinale sur les 90 troupeaux sélectionnés. L’incidence d’IIM semblait être un déterminant plus important de la prévalence d’IIM du troupeau comparativement à l’élimination des IIM. Le port de gants durant la traite, la désinfection pré-traite des trayons, de même qu’une condition adéquate des bouts de trayons démontraient des associations désirables avec les différentes mesures d’IIM. Ces résultats viennent souligner l’importance des procédures de traite pour l’obtention d’une réduction à long-terme de la prévalence d’IIM. Finalement, les facteurs de risque modifiables associés à l’incidence, à l’élimination et à la prévalence d’IIM à staphylocoques coagulase-négatif (SCN) ont été étudiés de manière similaire. Cependant, afin de prendre en considération les limitations de la culture bactériologique du lait pour l’identification des IIM causées par ce groupe de pathogènes, une approche semi-Bayesienne à l’aide de modèles de variable à classe latente a été utilisée. Les estimés non-ajusté de l’incidence, de l’élimination, de la prévalence et des associations avec les expositions apparaissaient tous considérablement biaisés par les imperfections de la procédure diagnostique. Ce biais était en général vers la valeur nulle. Encore une fois, l’incidence d’IIM était le principal déterminant de la prévalence d’IIM des troupeaux. Les litières de sable et de produits du bois, de même que l’accès au pâturage étaient associés à une incidence et une prévalence plus basse de SCN.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L'increment de bases de dades que cada vegada contenen imatges més difícils i amb un nombre més elevat de categories, està forçant el desenvolupament de tècniques de representació d'imatges que siguin discriminatives quan es vol treballar amb múltiples classes i d'algorismes que siguin eficients en l'aprenentatge i classificació. Aquesta tesi explora el problema de classificar les imatges segons l'objecte que contenen quan es disposa d'un gran nombre de categories. Primerament s'investiga com un sistema híbrid format per un model generatiu i un model discriminatiu pot beneficiar la tasca de classificació d'imatges on el nivell d'anotació humà sigui mínim. Per aquesta tasca introduïm un nou vocabulari utilitzant una representació densa de descriptors color-SIFT, i desprès s'investiga com els diferents paràmetres afecten la classificació final. Tot seguit es proposa un mètode par tal d'incorporar informació espacial amb el sistema híbrid, mostrant que la informació de context es de gran ajuda per la classificació d'imatges. Desprès introduïm un nou descriptor de forma que representa la imatge segons la seva forma local i la seva forma espacial, tot junt amb un kernel que incorpora aquesta informació espacial en forma piramidal. La forma es representada per un vector compacte obtenint un descriptor molt adequat per ésser utilitzat amb algorismes d'aprenentatge amb kernels. Els experiments realitzats postren que aquesta informació de forma te uns resultats semblants (i a vegades millors) als descriptors basats en aparença. També s'investiga com diferents característiques es poden combinar per ésser utilitzades en la classificació d'imatges i es mostra com el descriptor de forma proposat juntament amb un descriptor d'aparença millora substancialment la classificació. Finalment es descriu un algoritme que detecta les regions d'interès automàticament durant l'entrenament i la classificació. Això proporciona un mètode per inhibir el fons de la imatge i afegeix invariança a la posició dels objectes dins les imatges. S'ensenya que la forma i l'aparença sobre aquesta regió d'interès i utilitzant els classificadors random forests millora la classificació i el temps computacional. Es comparen els postres resultats amb resultats de la literatura utilitzant les mateixes bases de dades que els autors Aixa com els mateixos protocols d'aprenentatge i classificació. Es veu com totes les innovacions introduïdes incrementen la classificació final de les imatges.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Learning low dimensional manifold from highly nonlinear data of high dimensionality has become increasingly important for discovering intrinsic representation that can be utilized for data visualization and preprocessing. The autoencoder is a powerful dimensionality reduction technique based on minimizing reconstruction error, and it has regained popularity because it has been efficiently used for greedy pretraining of deep neural networks. Compared to Neural Network (NN), the superiority of Gaussian Process (GP) has been shown in model inference, optimization and performance. GP has been successfully applied in nonlinear Dimensionality Reduction (DR) algorithms, such as Gaussian Process Latent Variable Model (GPLVM). In this paper we propose the Gaussian Processes Autoencoder Model (GPAM) for dimensionality reduction by extending the classic NN based autoencoder to GP based autoencoder. More interestingly, the novel model can also be viewed as back constrained GPLVM (BC-GPLVM) where the back constraint smooth function is represented by a GP. Experiments verify the performance of the newly proposed model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diethylpropion (DEP) is a stimulant drug widely used for weight control in Brazil and other American countries. However, its effects on behavior and addiction potential are not yet well known. Data suggest that sensitization resulting from pre-exposure to psychostimulants could be a possible risk factor in subsequent drug addiction. The purpose of this investigation was to verify whether pre-exposure to DEP would sensitize rats to the motor activating effect and to the rewarding value of DEP. Two experiments were conducted. In both experiments rats were pre-exposed to DEP (20 mg/kg) or vehicle for 7 consecutive days. The acute effect of DEP (0.0, 1.0, 2.5 or 5.0 mg/kg) on motor activity (Experiment 1) and induction of Conditioned Place Preference-CPP (Experiment 2) were then measured. Results from Experiment 1 showed that 2.5 and 5.0 mg/kg DEP increased motor activity. Sensitization of this motor effect was observed. In Experiment 2, the doses of 2.5 and 5.0 mg/kg DEP induced CPP, indicating their rewarding value. However, no sensitization effect was observed. The results suggest that DEP at low doses has psychostimulant and rewarding properties. It is recommended that more effort should be dedicated to elucidating DEP abuse Potential. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: The frequent occurrence of inconclusive serology in blood banks and the absence of a gold standard test for Chagas'disease led us to examine the efficacy of the blood culture test and five commercial tests (ELISA, IIF, HAI, c-ELISA, rec-ELISA) used in screening blood donors for Chagas disease, as well as to investigate the prevalence of Trypanosoma cruzi infection among donors with inconclusive serology screening in respect to some epidemiological variables. METHODS: To obtain estimates of interest we considered a Bayesian latent class model with inclusion of covariates from the logit link. RESULTS: A better performance was observed with some categories of epidemiological variables. In addition, all pairs of tests (excluding the blood culture test) presented as good alternatives for both screening (sensitivity > 99.96% in parallel testing) and for confirmation (specificity > 99.93% in serial testing) of Chagas disease. The prevalence of 13.30% observed in the stratum of donors with inconclusive serology, means that probably most of these are non-reactive serology. In addition, depending on the level of specific epidemiological variables, the absence of infection can be predicted with a probability of 100% in this group from the pairs of tests using parallel testing. CONCLUSION: The epidemiological variables can lead to improved test results and thus assist in the clarification of inconclusive serology screening results. Moreover, all combinations of pairs using the five commercial tests are good alternatives to confirm results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are different ways to do cluster analysis of categorical data in the literature and the choice among them is strongly related to the aim of the researcher, if we do not take into account time and economical constraints. Main approaches for clustering are usually distinguished into model-based and distance-based methods: the former assume that objects belonging to the same class are similar in the sense that their observed values come from the same probability distribution, whose parameters are unknown and need to be estimated; the latter evaluate distances among objects by a defined dissimilarity measure and, basing on it, allocate units to the closest group. In clustering, one may be interested in the classification of similar objects into groups, and one may be interested in finding observations that come from the same true homogeneous distribution. But do both of these aims lead to the same clustering? And how good are clustering methods designed to fulfil one of these aims in terms of the other? In order to answer, two approaches, namely a latent class model (mixture of multinomial distributions) and a partition around medoids one, are evaluated and compared by Adjusted Rand Index, Average Silhouette Width and Pearson-Gamma indexes in a fairly wide simulation study. Simulation outcomes are plotted in bi-dimensional graphs via Multidimensional Scaling; size of points is proportional to the number of points that overlap and different colours are used according to the cluster membership.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recurrent wheezing or asthma is a common problem in children that has increased considerably in prevalence in the past few decades. The causes and underlying mechanisms are poorly understood and it is thought that a numb er of distinct diseases causing similar symptoms are involved. Due to the lack of a biologically founded classification system, children are classified according to their observed disease related features (symptoms, signs, measurements) into phenotypes. The objectives of this PhD project were a) to develop tools for analysing phenotypic variation of a disease, and b) to examine phenotypic variability of wheezing among children by applying these tools to existing epidemiological data. A combination of graphical methods (multivariate co rrespondence analysis) and statistical models (latent variables models) was used. In a first phase, a model for discrete variability (latent class model) was applied to data on symptoms and measurements from an epidemiological study to identify distinct phenotypes of wheezing. In a second phase, the modelling framework was expanded to include continuous variability (e.g. along a severity gradient) and combinations of discrete and continuo us variability (factor models and factor mixture models). The third phase focused on validating the methods using simulation studies. The main body of this thesis consists of 5 articles (3 published, 1 submitted and 1 to be submitted) including applications, methodological contributions and a review. The main findings and contributions were: 1) The application of a latent class model to epidemiological data (symptoms and physiological measurements) yielded plausible pheno types of wheezing with distinguishing characteristics that have previously been used as phenotype defining characteristics. 2) A method was proposed for including responses to conditional questions (e.g. questions on severity or triggers of wheezing are asked only to children with wheeze) in multivariate modelling.ii 3) A panel of clinicians was set up to agree on a plausible model for wheezing diseases. The model can be used to generate datasets for testing the modelling approach. 4) A critical review of methods for defining and validating phenotypes of wheeze in children was conducted. 5) The simulation studies showed that a parsimonious parameterisation of the models is required to identify the true underlying structure of the data. The developed approach can deal with some challenges of real-life cohort data such as variables of mixed mode (continuous and categorical), missing data and conditional questions. If carefully applied, the approach can be used to identify whether the underlying phenotypic variation is discrete (classes), continuous (factors) or a combination of these. These methods could help improve precision of research into causes and mechanisms and contribute to the development of a new classification of wheezing disorders in children and other diseases which are difficult to classify.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this research was to better understand the impact of the terrorist attacks in 2001 on public health, particularly for Texas public health. This study employed mixed methods to examine changes to public health culture within Texas local public health agencies, important attitudes of public health workers toward responding to a disaster, and the funding policies that might ensure our investment in public health emergency preparedness is protected. ^ A qualitative analysis of interviews conducted with a large sample of public health officials in Texas found that all the constituent parts of a peculiar culture for public health preparedness existed that spanned the state's local health departments regardless of size, or funding level. The new preparedness culture in Texas had the hallmarks necessary for a robust public health preparedness and emergency response system. ^ The willingness of public health workers, necessary to make these kinds of changes and mount a disaster response was examined in one of Texas' most experienced disaster response teams—the public health workers for the City of Houston. A hypothesized latent variable model showed that willingness mediated all other factors in the model (self-efficacy, knowledge, barriers, and risk perception) for self-reported likelihood of reporting to work for a disaster. The RMSEA for the final model was 0.042 with a confidence interval of 0.036—0.049 and the chi-squared difference test was P=0.08, indicating a well-fitted model that suggests willingness is an important factor for consideration by preparedness planners and researchers alike. ^ Finally, with disasters on the rise and federal funding for preparedness dwindling, a review of states' policies for the distribution of these funds and their advantages and disadvantages were examined through a review of current literature and public documents, and a survey of state-level public health officials, emergency management professionals and researchers. Although the base plus per-capita method is the most common, it is not necessarily perceived to be the most effective. No clear "optimal" method emerged from the study, but recommendations for a strategic combination of three methods were made that has the potential to maximize the benefits of each method, while minimizing the weaknesses.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sensory patches in the ear of a vertebrate can be compared with the mechanosensory bristles of a fly. This comparison has led to the discovery that lateral inhibition mediated by the Notch cell–cell signaling pathway, first characterized in Drosophila and crucial for bristle development, also has a key role in controlling the pattern of sensory hair cells and supporting cells in the ear. We review the arguments for considering the sensory patches of the vertebrate ear and bristles of the insect to be homologous structures, evolved from a common ancestral mechanosensory organ, and we examine more closely the role of Notch signaling in each system. Using viral vectors to misexpress components of the Notch pathway in the chick ear, we show that a simple lateral-inhibition model based on feedback regulation of the Notch ligand Delta is inadequate for the ear just as it is for the fly bristle. The Notch ligand Serrate1, expressed in supporting cells in the ear, is regulated by lateral induction, not lateral inhibition; commitment to become a hair cell is not simply controlled by levels of expression of the Notch ligands Delta1, Serrate1, and Serrate2 in the neighbors of the nascent hair cell; and at least one factor, Numb, capable of blocking reception of lateral inhibition is concentrated in hair cells. These findings reinforce the parallels between the vertebrate ear and the fly bristle and show how study of the insect system can help us understand the vertebrate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The current study tested two competing models of Attention-Deficit/Hyperactivity Disorder (AD/HD), the inhibition and state regulation theories, by conducting fine-grained analyses of the Stop-Signal Task and another putative measure of behavioral inhibition, the Gordon Continuous Performance Test (G-CPT), in a large sample of children and adolescents. The inhibition theory posits that performance on these tasks reflects increased difficulties for AD/HD participants to inhibit prepotent responses. The model predicts that putative stop-signal reaction time (SSRT) group differences on the Stop-Signal Task will be primarily related to AD/HD participants requiring more warning than control participants to inhibit to the stop-signal and emphasizes the relative importance of commission errors, particularly "impulsive" type commissions, over other error types on the G-CPT. The state regulation theory, on the other hand, proposes response variability due to difficulties maintaining an optimal state of arousal as the primary deficit in AD/HD. This model predicts that SSRT differences will be more attributable to slower and/or more variable reaction time (RT) in the AD/HD group, as opposed to reflecting inhibitory deficits. State regulation assumptions also emphasize the relative importance of omission errors and "slow processing" type commissions over other error types on the G-CPT. Overall, results of Stop-Signal Task analyses were more supportive of state regulation predictions and showed that greater response variability (i.e., SDRT) in the AD/HD group was not reducible to slow mean reaction time (MRT) and that response variability made a larger contribution to increased SSRT in the AD/HD group than inhibitory processes. Examined further, ex-Gaussian analyses of Stop-Signal Task go-trial RT distributions revealed that increased variability in the AD/HD group was not due solely to a few excessively long RTs in the tail of the AD/HD distribution (i.e., tau), but rather indicated the importance of response variability throughout AD/HD group performance on the Stop-Signal Task, as well as the notable sensitivity of ex-Gaussian analyses to variability in data screening procedures. Results of G-CPT analyses indicated some support for the inhibition model, although error type analyses failed to further differentiate the theories. Finally, inclusion of primary variables of interest in exploratory factor analysis with other neurocognitive predictors of AD/HD indicated response variability as a separable construct and further supported its role in Stop-Signal Task performance. Response variability did not, however, make a unique contribution to the prediction of AD/HD symptoms beyond measures of motor processing speed in multiple deficit regression analyses. Results have implications for the interpretation of the processes reflected in widely-used variables in the AD/HD literature, as well as for the theoretical understanding of AD/HD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis which is based on a linear transformations between the latent space and the data space. In this paper we introduce a form of non-linear latent variable model called the Generative Topographic Mapping, for which the parameters of the model can be determined using the EM algorithm. GTM provides a principled alternative to the widely used Self-Organizing Map (SOM) of Kohonen (1982), and overcomes most of the significant limitations of the SOM. We demonstrate the performance of the GTM algorithm on a toy problem and on simulated data from flow diagnostics for a multi-phase oil pipeline.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Self-Organizing Map (SOM) algorithm has been extensively studied and has been applied with considerable success to a wide variety of problems. However, the algorithm is derived from heuristic ideas and this leads to a number of significant limitations. In this paper, we consider the problem of modelling the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. We introduce a novel form of latent variable model, which we call the GTM algorithm (for Generative Topographic Mapping), which allows general non-linear transformations from latent space to data space, and which is trained using the EM (expectation-maximization) algorithm. Our approach overcomes the limitations of the SOM, while introducing no significant disadvantages. We demonstrate the performance of the GTM algorithm on simulated data from flow diagnostics for a multi-phase oil pipeline.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis which is based on a linear transformations between the latent space and the data space. In this paper we introduce a form of non-linear latent variable model called the Generative Topographic Mapping, for which the parameters of the model can be determined using the EM algorithm. GTM provides a principled alternative to the widely used Self-Organizing Map (SOM) of Kohonen (1982), and overcomes most of the significant limitations of the SOM. We demonstrate the performance of the GTM algorithm on a toy problem and on simulated data from flow diagnostics for a multi-phase oil pipeline.