889 resultados para Language Model


Relevância:

70.00% 70.00%

Publicador:

Resumo:

If one has a distribution of words (SLUNs or CLUNS) in a text written in language L(MT), and is adjusted one of the mathematical expressions of distribution that exists in the mathematical literature, some parameter of the elected expression it can be considered as a measure of the diversity. But because the adjustment is not always perfect as usual measure; it is preferable to select an index that doesn't postulate a regularity of distribution expressible for a simple formula. The problem can be approachable statistically, without having special interest for the organization of the text. It can serve as index any monotonous function that has a minimum value when all their elements belong to the same class, that is to say, all the individuals belong to oneself symbol, and a maximum value when each element belongs to a different class, that is to say, each individual is of a different symbol. It should also gather certain conditions like they are: to be not very sensitive to the extension of the text and being invariant to certain number of operations of selection in the text. These operations can be theoretically random. The expressions that offer more advantages are those coming from the theory of the information of Shannon-Weaver. Based on them, the authors develop a theoretical study for indexes of diversity to be applied in texts built in modeling language L(MT), although anything impedes that they can be applied to texts written in natural languages.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a formal but practical approach for defining and using design patterns. Initially we formalize the concepts commonly used in defining design patterns using Object-Z. We also formalize consistency constraints that must be satisfied when a pattern is deployed in a design model. Then we implement the pattern modeling language and its consistency constraints using an existing modeling framework, EMF, and incorporate the implementation as plug-ins to the Eclipse modeling environment. While the language is defined formally in terms of Object-Z definitions, the language is implemented in a practical environment. Using the plug-ins, users can develop precise pattern descriptions without knowing the underlying formalism, and can use the tool to check the validity of the pattern descriptions and pattern usage in design models. In this work, formalism brings precision to the pattern language definition and its implementation brings practicability to our pattern-based modeling approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of the PC and Internet for placing telephone calls will present new opportunities to capture vast amounts of un-transcribed speech for a particular speaker. This paper investigates how to best exploit this data for speaker-dependent speech recognition. Supervised and unsupervised experiments in acoustic model and language model adaptation are presented. Using one hour of automatically transcribed speech per speaker with a word error rate of 36.0%, unsupervised adaptation resulted in an absolute gain of 6.3%, equivalent to 70% of the gain from the supervised case, with additional adaptation data likely to yield further improvements. LM adaptation experiments suggested that although there seems to be a small degree of speaker idiolect, adaptation to the speaker alone, without considering the topic of the conversation, is in itself unlikely to improve transcription accuracy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Perez-Losada et al. [1] analyzed 72 complete genomes corresponding to nine mammalian (67 strains) and 2 avian (5 strains) polyomavirus species using maximum likelihood and Bayesian methods of phylogenetic inference. Because some data of 2 genomes in their work are now not available in GenBank, in this work, we analyze the phylogenetic relationship of the remaining 70 complete genomes corresponding to nine mammalian (65 strains) and two avian (5 strains) polyomavirus species using a dynamical language model approach developed by our group (Yu et al., [26]). This distance method does not require sequence alignment for deriving species phylogeny based on overall similarities of the complete genomes. Our best tree separates the bird polyomaviruses (avian polyomaviruses and goose hemorrhagic polymaviruses) from the mammalian polyomaviruses, which supports the idea of splitting the genus into two subgenera. Such a split is consistent with the different viral life strategies of each group. In the mammalian polyomavirus subgenera, mouse polyomaviruses (MPV), simian viruses 40 (SV40), BK viruses (BKV) and JC viruses (JCV) are grouped as different branches as expected. The topology of our best tree is quite similar to that of the tree constructed by Perez-Losada et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent times, the improved levels of accuracy obtained by Automatic Speech Recognition (ASR) technology has made it viable for use in a number of commercial products. Unfortunately, these types of applications are limited to only a few of the world’s languages, primarily because ASR development is reliant on the availability of large amounts of language specific resources. This motivates the need for techniques which reduce this language-specific, resource dependency. Ideally, these approaches should generalise across languages, thereby providing scope for rapid creation of ASR capabilities for resource poor languages. Cross Lingual ASR emerges as a means for addressing this need. Underpinning this approach is the observation that sound production is largely influenced by the physiological construction of the vocal tract, and accordingly, is human, and not language specific. As a result, a common inventory of sounds exists across languages; a property which is exploitable, as sounds from a resource poor, target language can be recognised using models trained on resource rich, source languages. One of the initial impediments to the commercial uptake of ASR technology was its fragility in more challenging environments, such as conversational telephone speech. Subsequent improvements in these environments has gained consumer confidence. Pragmatically, if cross lingual techniques are to considered a viable alternative when resources are limited, they need to perform under the same types of conditions. Accordingly, this thesis evaluates cross lingual techniques using two speech environments; clean read speech and conversational telephone speech. Languages used in evaluations are German, Mandarin, Japanese and Spanish. Results highlight that previously proposed approaches provide respectable results for simpler environments such as read speech, but degrade significantly when in the more taxing conversational environment. Two separate approaches for addressing this degradation are proposed. The first is based on deriving better target language lexical representation, in terms of the source language model set. The second, and ultimately more successful approach, focuses on improving the classification accuracy of context-dependent (CD) models, by catering for the adverse influence of languages specific phonotactic properties. Whilst the primary research goal in this thesis is directed towards improving cross lingual techniques, the catalyst for investigating its use was based on expressed interest from several organisations for an Indonesian ASR capability. In Indonesia alone, there are over 200 million speakers of some Malay variant, provides further impetus and commercial justification for speech related research on this language. Unfortunately, at the beginning of the candidature, limited research had been conducted on the Indonesian language in the field of speech science, and virtually no resources existed. This thesis details the investigative and development work dedicated towards obtaining an ASR system with a 10000 word recognition vocabulary for the Indonesian language.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the first time in human history, large volumes of spoken audio are being broadcast, made available on the internet, archived, and monitored for surveillance every day. New technologies are urgently required to unlock these vast and powerful stores of information. Spoken Term Detection (STD) systems provide access to speech collections by detecting individual occurrences of specified search terms. The aim of this work is to develop improved STD solutions based on phonetic indexing. In particular, this work aims to develop phonetic STD systems for applications that require open-vocabulary search, fast indexing and search speeds, and accurate term detection. Within this scope, novel contributions are made within two research themes, that is, accommodating phone recognition errors and, secondly, modelling uncertainty with probabilistic scores. A state-of-the-art Dynamic Match Lattice Spotting (DMLS) system is used to address the problem of accommodating phone recognition errors with approximate phone sequence matching. Extensive experimentation on the use of DMLS is carried out and a number of novel enhancements are developed that provide for faster indexing, faster search, and improved accuracy. Firstly, a novel comparison of methods for deriving a phone error cost model is presented to improve STD accuracy, resulting in up to a 33% improvement in the Figure of Merit. A method is also presented for drastically increasing the speed of DMLS search by at least an order of magnitude with no loss in search accuracy. An investigation is then presented of the effects of increasing indexing speed for DMLS, by using simpler modelling during phone decoding, with results highlighting the trade-off between indexing speed, search speed and search accuracy. The Figure of Merit is further improved by up to 25% using a novel proposal to utilise word-level language modelling during DMLS indexing. Analysis shows that this use of language modelling can, however, be unhelpful or even disadvantageous for terms with a very low language model probability. The DMLS approach to STD involves generating an index of phone sequences using phone recognition. An alternative approach to phonetic STD is also investigated that instead indexes probabilistic acoustic scores in the form of a posterior-feature matrix. A state-of-the-art system is described and its use for STD is explored through several experiments on spontaneous conversational telephone speech. A novel technique and framework is proposed for discriminatively training such a system to directly maximise the Figure of Merit. This results in a 13% improvement in the Figure of Merit on held-out data. The framework is also found to be particularly useful for index compression in conjunction with the proposed optimisation technique, providing for a substantial index compression factor in addition to an overall gain in the Figure of Merit. These contributions significantly advance the state-of-the-art in phonetic STD, by improving the utility of such systems in a wide range of applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper details the participation of the Australian e- Health Research Centre (AEHRC) in the ShARe/CLEF 2013 eHealth Evaluation Lab { Task 3. This task aims to evaluate the use of information retrieval (IR) systems to aid consumers (e.g. patients and their relatives) in seeking health advice on the Web. Our submissions to the ShARe/CLEF challenge are based on language models generated from the web corpus provided by the organisers. Our baseline system is a standard Dirichlet smoothed language model. We enhance the baseline by identifying and correcting spelling mistakes in queries, as well as expanding acronyms using AEHRC's Medtex medical text analysis platform. We then consider the readability and the authoritativeness of web pages to further enhance the quality of the document ranking. Measures of readability are integrated in the language models used for retrieval via prior probabilities. Prior probabilities are also used to encode authoritativeness information derived from a list of top-100 consumer health websites. Empirical results show that correcting spelling mistakes and expanding acronyms found in queries signi cantly improves the e ectiveness of the language model baseline. Readability priors seem to increase retrieval e ectiveness for graded relevance at early ranks (nDCG@5, but not precision), but no improvements are found at later ranks and when considering binary relevance. The authoritativeness prior does not appear to provide retrieval gains over the baseline: this is likely to be because of the small overlap between websites in the corpus and those in the top-100 consumer-health websites we acquired.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents our system to address the CogALex-IV 2014 shared task of identifying a single word most semantically related to a group of 5 words (queries). Our system uses an implementation of a neural language model and identifies the answer word by finding the most semantically similar word representation to the sum of the query representations. It is a fully unsupervised system which learns on around 20% of the UkWaC corpus. It correctly identifies 85 exact correct targets out of 2,000 queries, 285 approximate targets in lists of 5 suggestions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent advances in neural language models have contributed new methods for learning distributed vector representations of words (also called word embeddings). Two such methods are the continuous bag-of-words model and the skipgram model. These methods have been shown to produce embeddings that capture higher order relationships between words that are highly effective in natural language processing tasks involving the use of word similarity and word analogy. Despite these promising results, there has been little analysis of the use of these word embeddings for retrieval. Motivated by these observations, in this paper, we set out to determine how these word embeddings can be used within a retrieval model and what the benefit might be. To this aim, we use neural word embeddings within the well known translation language model for information retrieval. This language model captures implicit semantic relations between the words in queries and those in relevant documents, thus producing more accurate estimations of document relevance. The word embeddings used to estimate neural language models produce translations that differ from previous translation language model approaches; differences that deliver improvements in retrieval effectiveness. The models are robust to choices made in building word embeddings and, even more so, our results show that embeddings do not even need to be produced from the same corpus being used for retrieval.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recommender systems assist users in finding what they want. The challenging issue is how to efficiently acquire user preferences or user information needs for building personalized recommender systems. This research explores the acquisition of user preferences using data taxonomy information to enhance personalized recommendations for alleviating cold-start problem. A concept hierarchy model is proposed, which provides a two-dimensional hierarchy for acquiring user preferences. The language model is also extended for the proposed hierarchy in order to generate an effective recommender algorithm. Both Amazon.com book and music datasets are used to evaluate the proposed approach, and the experimental results show that the proposed approach is promising.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe a method for text entry based on inverse arithmetic coding that relies on gaze direction and which is faster and more accurate than using an on-screen keyboard. These benefits are derived from two innovations: the writing task is matched to the capabilities of the eye, and a language model is used to make predictable words and phrases easier to write.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the development of the CU-HTK Mandarin Broadcast News (BN) transcription system. The Mandarin BN task includes a significant amount of English data. Hence techniques have been investigated to allow the same system to handle both Mandarin and English by augmenting the Mandarin training sets with English acoustic and language model training data. A range of acoustic models were built including models based on Gaussianised features, speaker adaptive training and feature-space MPE. A multi-branch system architecture is described in which multiple acoustic model types, alternate phone sets and segmentations can be used in a system combination framework to generate the final output. The final system shows state-of-the-art performance over a range of test sets. ©2006 British Crown Copyright.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the Cambridge University HTK (CU-HTK) system for the automatic transcription of conversational telephone speech. A detailed discussion of the most important techniques in front-end processing, acoustic modeling and model training, language and pronunciation modeling are presented. These include the use of conversation side based cepstral normalization, vocal tract length normalization, heteroscedastic linear discriminant analysis for feature projection, minimum phone error training and speaker adaptive training, lattice-based model adaptation, confusion network based decoding and confidence score estimation, pronunciation selection, language model interpolation, and class based language models. The transcription system developed for participation in the 2002 NIST Rich Transcription evaluations of English conversational telephone speech data is presented in detail. In this evaluation the CU-HTK system gave an overall word error rate of 23.9%, which was the best performance by a statistically significant margin. Further details on the derivation of faster systems with moderate performance degradation are discussed in the context of the 2002 CU-HTK 10 × RT conversational speech transcription system. © 2005 IEEE.