911 resultados para Land Mobile Radio Cellular Systems
Resumo:
En este momento están entrando en operación los primeros sistemas UMTS en Europa, y están operando en varios países del mundo sistemas CDMA-2000 1xRTT, y aunque existen muchos trabajos publicados sobre la capacidad de estos sistemas, prácticamente todo lo existente se basa en el comportamiento de sistemas ideales que consideran celdas hexagonales o circulares y propagación basada en exponente inverso de la distancia y poco es lo que hay sobre el comportamiento real de dichos sistemas en entornos reales.
Sobre el exponente de pérdidas de propagación, es bien conocido que este afecta la capacidad de los sistemas CDMA; sin embargo hasta ahora no se ha considerado el efecto de los modelos de propagación que tienen en cuenta la difracción y otros fenómenos más cercanos a la realidad, y por lo tanto no se ha considerado el efecto del entorno urbano y el terreno sobre la capacidad real de los sistemas basados en CDMA.
Resumo:
Healthcare systems have assimilated information and communication technologies in order to improve the quality of healthcare and patient's experience at reduced costs. The increasing digitalization of people's health information raises however new threats regarding information security and privacy. Accidental or deliberate data breaches of health data may lead to societal pressures, embarrassment and discrimination. Information security and privacy are paramount to achieve high quality healthcare services, and further, to not harm individuals when providing care. With that in mind, we give special attention to the category of Mobile Health (mHealth) systems. That is, the use of mobile devices (e.g., mobile phones, sensors, PDAs) to support medical and public health. Such systems, have been particularly successful in developing countries, taking advantage of the flourishing mobile market and the need to expand the coverage of primary healthcare programs. Many mHealth initiatives, however, fail to address security and privacy issues. This, coupled with the lack of specific legislation for privacy and data protection in these countries, increases the risk of harm to individuals. The overall objective of this thesis is to enhance knowledge regarding the design of security and privacy technologies for mHealth systems. In particular, we deal with mHealth Data Collection Systems (MDCSs), which consists of mobile devices for collecting and reporting health-related data, replacing paper-based approaches for health surveys and surveillance. This thesis consists of publications contributing to mHealth security and privacy in various ways: with a comprehensive literature review about mHealth in Brazil; with the design of a security framework for MDCSs (SecourHealth); with the design of a MDCS (GeoHealth); with the design of Privacy Impact Assessment template for MDCSs; and with the study of ontology-based obfuscation and anonymisation functions for health data.
Resumo:
Les techniques des directions d’arrivée (DOA) sont une voie prometteuse pour accroitre la capacité des systèmes et les services de télécommunications en permettant de mieux estimer le canal radio-mobile. Elles permettent aussi de suivre précisément des usagers cellulaires pour orienter les faisceaux d’antennes dans leur direction. S’inscrivant dans ce contexte, ce présent mémoire décrit étape par étape l’implémentation de l’algorithme de haut niveau MUSIC (MUltiple SIgnal Classification) sur une plateforme FPGA afin de déterminer en temps réel l’angle d’arrivée d’une ou des sources incidentes à un réseau d’antennes. Le concept du prototypage rapide des lois de commande (RCP) avec les outils de XilinxTM System generator (XSG) et du MBDK (Model Based Design Kit) de NutaqTM est le concept de développement utilisé. Ce concept se base sur une programmation de code haut niveau à travers des modèles, pour générer automatiquement un code de bas niveau. Une attention particulière est portée sur la méthode choisie pour résoudre le problème de la décomposition en valeurs et vecteurs propres de la matrice complexe de covariance par l’algorithme de Jacobi. L’architecture mise en place implémentant cette dernière dans le FPGA (Field Programmable Gate Array) est détaillée. Par ailleurs, il est prouvé que MUSIC ne peut effectuer une estimation intéressante de la position des sources sans une calibration préalable du réseau d’antennes. Ainsi, la technique de calibration par matrice G utilisée dans ce projet est présentée, en plus de son modèle d’implémentation. Enfin, les résultats expérimentaux du système mis à l’épreuve dans un environnement réel en présence d’une source puis de deux sources fortement corrélées sont illustrés et analysés.
Resumo:
This paper provides a review of the state of the art relevant work on the use of public mobile data networks for aircraft telemetry and control proposes. Moreover, it describes the characterisation for airborne uses of the public mobile data communication systems known broadly as 3G. The motivation for this study was the explore how this mature public communication systems could be used for aviation purposes. An experimental system was fitted to a light aircraft to record communication latency, line speed, RF level, packet loss and cell tower identifier. Communications was established using internet protocols and connection was made to a local server. The aircraft was flown in both remote and populous areas at altitudes up to 8500 ft in a region located in South East Queensland, Australia. Results show that the average airborne RF levels are better than those on the ground by 21% and in the order of - 77dbm. Latencies were in the order of 500ms (1/2 the latency of Iridium), an average download speed of 0.48Mb/s, average uplink speed of 0.85Mb/s, a packet of information loss of 6.5%. The maximum communication range was also observed to be 70km from a single cell station. The paper also describes possible limitations and utility of using such communications architecture for both manned and unmanned aircraft systems.
Resumo:
This paper describes the characterisation for airborne uses of the public mobile data communication systems known broadly as 3G. The motivation for this study was to explore how this mature public communication systems could be used for aviation purposes. An experimental system was fitted to a light aircraft to record communication latency, line speed, RF level, packet loss and cell tower identifier. Communications was established using internet protocols and connection was made to a local server. The aircraft was flown in both remote and populous areas at altitudes up to 8500ft in a region located in South East Queensland, Australia. Results show that the average airborne RF levels are better than those on the ground by 21% and in the order of -77 dbm. Latencies were in the order of 500 ms (1/2 the latency of Iridium), an average download speed of 0.48 Mb/s, average uplink speed of 0.85 Mb/s, a packet of information loss of 6.5%. The maximum communication range was also observed to be 70km from a single cell station. The paper also describes possible limitations and utility of using such a communications architecture for both manned and unmanned aircraft systems.
Resumo:
Spectrum sensing optimisation techniques maximise the efficiency of spectrum sensing while satisfying a number of constraints. Many optimisation models consider the possibility of the primary user changing activity state during the secondary user's transmission period. However, most ignore the possibility of activity change during the sensing period. The observed primary user signal during sensing can exhibit a duty cycle which has been shown to severely degrade detection performance. This paper shows that (a) the probability of state change during sensing cannot be neglected and (b) the true detection performance obtained when incorporating the duty cycle of the primary user signal can deviate significantly from the results expected with the assumption of no such duty cycle.
Resumo:
Usability in HCI (Human-Computer Interaction) is normally understood as the simplicity and clarity with which the interaction with a computer program or a web site is designed. Identity management systems need to provide adequate usability and should have a simple and intuitive interface. The system should not only be designed to satisfy service provider requirements but it has to consider user requirements, otherwise it will lead to inconvenience and poor usability for users when managing their identities. With poor usability and a poor user interface with regard to security, it is highly likely that the system will have poor security. The rapid growth in the number of online services leads to an increasing number of different digital identities each user needs to manage. As a result, many people feel overloaded with credentials, which in turn negatively impacts their ability to manage them securely. Passwords are perhaps the most common type of credential used today. To avoid the tedious task of remembering difficult passwords, users often behave less securely by using low entropy and weak passwords. Weak passwords and bad password habits represent security threats to online services. Some solutions have been developed to eliminate the need for users to create and manage passwords. A typical solution is based on generating one-time passwords, i.e. passwords for single session or transaction usage. Unfortunately, most of these solutions do not satisfy scalability and/or usability requirements, or they are simply insecure. In this thesis, the security and usability aspects of contemporary methods for authentication based on one-time passwords (OTP) are examined and analyzed. In addition, more scalable solutions that provide a good user experience while at the same time preserving strong security are proposed.
Resumo:
One of the ways in which indigenous communities seek justice is through the formal recognition of their sovereign rights to land. Such recognition allows indigenous groups to maintain a physical and spiritual connection with their land and continue customary management of their land. Indigenous groups world over face significant hurdles in getting their customary rights to land recognized by legal systems. One of the main difficulties for indigenous groups in claiming customary land rights is the existence of a range of conflicting legal entitlements attaching to the land in question. In Australia, similar to New Zealand and Canada legal recognition to customary land is recognized through a grant of native title rights or through the establishment of land use agreement. In other jurisdictions such as Indonesia and Papua New Guinea a form of customary land title has been preserved and is recognized by the legal system. The implementation of REDD+ and other forms of forest carbon investment activities compounds the already complex arrangements surrounding legal recognition of customary land rights. Free, prior and informed consent of indigenous groups is essential for forest carbon investment on customary land. The attainment of such consent in practice remains challenging due to the number of conflicting interests often associated with forested land. This paper examines Australia’s experience in recongising indigenous land rights under its International Forest Carbon Initiative and under its domestic Carbon Credits (Carbon Farming Initiative) Act (Australia) 2011. Australia’s International Forest Carbon initiative has a budget of $273 million dollars. In 2008 the governments of Australia and Indonesia signed the Indonesia-Australia Forest Carbon Partnership Agreement. This paper will examine the indigenous land tenure and justice lessons learned from the implementation of the Kalimantan Forest and Climate Partnership (KFCP). The KFCP is $30 million dollar project taking place over 120,000 hectares of degraded and forested peatland in Central Kalimantan, Indonesia. The KFCP project site contains seven villages of the Dayak Ngdu indigenous people. In 2011 Australia established a domestic Forest Carbon Initiative, which seeks to provide new economic opportunities for farmers, forest growers and indigenous landholders while helping the environmental by reducing carbon pollution. This paper will explore the manner in which indigenous people are able to participate within these scheme noting the limits and opportunities in deriving co-benefits for indigenous people in Australia under this scheme.
Resumo:
This paper reviews the growing influence of human rights issues on land rights, administration, management and tenure. In the last few decades, attention focussed on integrating economic and environmental considerations to achieve sustainable land use. The World Trade Organisation began in 1995. As a condition of membership, nations undertook legislative programmes aimed at reducing price distortions and barriers to international trade. Reducing trade barriers has direct effects on agricultural production as a major land use. Similarly, as signatories to the 1992 Rio Declaration, nations undertook caring for and reporting on the state of the environment. However, quality of life is also an issue in deciding what is sustainable development. The Universal Declaration of Human Rights, proclaimed in 1948, provided a framework for a series of international human rights conventions. These conventions now influence national legislative programmes. The purpose of this paper is to review some of the implications of human rights on rights in land and the production and use of spatial information.
Resumo:
University campuses have thousands of new students, staff and visitors every year. For those who are unfamiliar with the campus environment, an effective pedestrian navigation system is essential to orientate and guide them around the campus. Compared to traditional navigation systems, such as physical signposts and digital map kiosks, a mobile pedestrian navigation system provides advantages in terms of mobility, sensing capabilities, weather-awareness when the user is on the go. However, how best to design a mobile pedestrian navigation system for university campuses is still vague due to limited research in understanding how pedestrians interact with the system, and what information is required for traveling in a complex environment such as university campus. In this paper, we present a mobile pedestrian navigation system called QUT Nav. A field study with eight participants was run in a university campus context, aiming to identify key information required in a mobile pedestrian navigation system for user traveling in university campuses. It also investigated user's interactions and behaviours while they were navigating in the campus environment. Based on the results from the field study, a recommendation for designing mobile pedestrian navigation systems for university campuses is stated.
Resumo:
Quality of experience (QoE) measures the overall perceived quality of mobile video delivery from subjective user experience and objective system performance. Current QoE computing models have two main limitations: 1) insufficient consideration of the factors influencing QoE, and; 2) limited studies on QoE models for acceptability prediction. In this paper, a set of novel acceptability-based QoE models, denoted as A-QoE, is proposed based on the results of comprehensive user studies on subjective quality acceptance assessments. The models are able to predict users’ acceptability and pleasantness in various mobile video usage scenarios. Statistical regression analysis has been used to build the models with a group of influencing factors as independent predictors, including encoding parameters and bitrate, video content characteristics, and mobile device display resolution. The performance of the proposed A-QoE models has been compared with three well-known objective Video Quality Assessment metrics: PSNR, SSIM and VQM. The proposed A-QoE models have high prediction accuracy and usage flexibility. Future user-centred mobile video delivery systems can benefit from applying the proposed QoE-based management to optimize video coding and quality delivery decisions.
Resumo:
The deployment of new emerging technologies, such as cooperative systems, allows the traffic community to foresee relevant improvements in terms of traffic safety and efficiency. Autonomous vehicles are able to share information about the local traffic state in real time, which could result in a better reaction to the mechanism of traffic jam formation. An upstream single-hop radio broadcast network can improve the perception of each cooperative driver within a specific radio range and hence the traffic stability. The impact of vehicle to vehicle cooperation on the onset of traffic congestion is investigated analytically and through simulation. A next generation simulation field dataset is used to calibrate the full velocity difference car-following model, and the MOBIL lane-changing model is implemented. The robustness of the calibration as well as the heterogeneity of the drivers is discussed. Assuming that congestion can be triggered either by the heterogeneity of drivers' behaviours or abnormal lane-changing behaviours, the calibrated car-following model is used to assess the impact of a microscopic cooperative law on egoistic lane-changing behaviours. The cooperative law can help reduce and delay traffic congestion and can have a positive effect on safety indicators.
Resumo:
Wireless technologies are continuously evolving. Second generation cellular networks have gained worldwide acceptance. Wireless LANs are commonly deployed in corporations or university campuses, and their diffusion in public hotspots is growing. Third generation cellular systems are yet to affirm everywhere; still, there is an impressive amount of research ongoing for deploying beyond 3G systems. These new wireless technologies combine the characteristics of WLAN based and cellular networks to provide increased bandwidth. The common direction where all the efforts in wireless technologies are headed is towards an IP-based communication. Telephony services have been the killer application for cellular systems; their evolution to packet-switched networks is a natural path. Effective IP telephony signaling protocols, such as the Session Initiation Protocol (SIP) and the H 323 protocol are needed to establish IP-based telephony sessions. However, IP telephony is just one service example of IP-based communication. IP-based multimedia sessions are expected to become popular and offer a wider range of communication capabilities than pure telephony. In order to conjoin the advances of the future wireless technologies with the potential of IP-based multimedia communication, the next step would be to obtain ubiquitous communication capabilities. According to this vision, people must be able to communicate also when no support from an infrastructured network is available, needed or desired. In order to achieve ubiquitous communication, end devices must integrate all the capabilities necessary for IP-based distributed and decentralized communication. Such capabilities are currently missing. For example, it is not possible to utilize native IP telephony signaling protocols in a totally decentralized way. This dissertation presents a solution for deploying the SIP protocol in a decentralized fashion without support of infrastructure servers. The proposed solution is mainly designed to fit the needs of decentralized mobile environments, and can be applied to small scale ad-hoc networks or also bigger networks with hundreds of nodes. A framework allowing discovery of SIP users in ad-hoc networks and the establishment of SIP sessions among them, in a fully distributed and secure way, is described and evaluated. Security support allows ad-hoc users to authenticate the sender of a message, and to verify the integrity of a received message. The distributed session management framework has been extended in order to achieve interoperability with the Internet, and the native Internet applications. With limited extensions to the SIP protocol, we have designed and experimentally validated a SIP gateway allowing SIP signaling between ad-hoc networks with private addressing space and native SIP applications in the Internet. The design is completed by an application level relay that permits instant messaging sessions to be established in heterogeneous environments. The resulting framework constitutes a flexible and effective approach for the pervasive deployment of real time applications.
Resumo:
Multicode operation in space-time block coded (STBC) multiple input multiple output (MIMO) systems can provide additional degrees of freedom in code domain to achieve high data rates. In such multicode STBC systems, the receiver experiences code domain interference (CDI) in frequency selective fading. In this paper, we propose a linear parallel interference cancellation (LPIC) approach to cancel the CDI in multicode STBC in frequency selective fading. The proposed detector first performs LPIC followed by STBC decoding. We evaluate the bit error performance of the detector and show that it effectively cancels the CDI and achieves improved error performance. Our results further illustrate how the combined effect of interference cancellation, transmit diversity, and RAKE diversity affect the bit error performance of the system.
Resumo:
Synchronization issues pose a big challenge in cooperative communications. The benefits of cooperative diversity could be easily undone by improper synchronization. The problem arises because it would be difficult, from a complexity perspective, for multiple transmitting nodes to synchronize to a single receiver. For OFDM based systems, loss of performance due to imperfect carrier synchronization is severe, since it results in inter-carrier interference (ICI). The use of space-time/space-frequency codes from orthogonal designs are attractive for cooperative encoding. But orthogonal designs suffer from inter-symbol interference (ISI) due to the violation of quasi-static assumption, which can arise due to frequency- or time-selectivity of the channel. In this paper, we are concerned with combating the effects of i) ICI induced by carrier frequency offsets (CFO), and ii) ISI induced by frequency selectivity of the channel, in a cooperative communication scheme using space-frequency block coded (SFBC) OFDM. Specifically, we present an iterative interference cancellation (IC) algorithm to combat the ISI and ICI effects. The proposed algorithm could be applied to any orthogonal or quasi-orthogonal designs in cooperative SFBC OFDM schemes.