980 resultados para Lambda Protein Phosphatase
Resumo:
The molecular integration of nutrient-and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of kappa B kinase beta. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of kappa B kinase beta phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity. (Endocrinology 153:5261-5274, 2012)
Resumo:
Deregulation of receptor tyrosine kinases (RTKs) is linked to a broad range of cancers, stressing the necessity of studying their regulatory pathways. We and others demonstrated previously that c-Cbl is necessary for the lysosomal degradation of erythropoietin-producing hepatocellular B1 (EphB1) carcinoma and epidermal growth factor receptor (EGFR) RTKs. Moreover, the tumor suppressor phosphatase and tensin homolog (PTEN) was shown to modulate c-Cbl-dependent EGFR degradation. We therefore investigated the involvement of PTEN in EphB1 signaling and degradation. We used PTEN mutants, PTEN, and NHERF1 small interfering RNA in CHO-EphB1 and SW480 cells endogenously expressing EphB1 to delineate EphB1-PTEN interactions. PTEN was constitutively associated with c-Cbl, protecting it from degradation. EphB1 stimulation triggered ∼50% serine-threonine PTEN dephosphorylation and PTEN-Cbl complex disruption, a process requiring PTEN protein phosphatase activity. Both proteins independently translocated to EphB1, with PTEN in association with the scaffold protein NHERF1. Biologically, PTEN lipid phosphatase activity impairs EphB1-dependent cell adhesion and chemotaxis. This study demonstrates for the first time in mammalian cells that the Eph receptor and PTEN associate and influence their signaling. Moreover, it contributes to the emerging concept that PTEN regulates expression of RTKs through modulation of their degradation. Finally, it reveals a new role for PTEN protein phosphatase activity involved in this process.
Resumo:
The effects of insulin on the mammalian target of rapamycin, mTOR, were investigated in 3T3-L1 adipocytes. mTOR protein kinase activity was measured in immune complex assays with recombinant PHAS-I as substrate. Insulin-stimulated kinase activity was clearly observed when immunoprecipitations were conducted with the mTOR antibody, mTAb2. Insulin also increased by severalfold the 32P content of mTOR that was determined after purifying the protein from 32P-labeled adipocytes with rapamycin⋅FKBP12 agarose beads. Insulin affected neither the amount of mTOR immunoprecipitated nor the amount of mTOR detected by immunoblotting with mTAb2. However, the hormone markedly decreased the reactivity of mTOR with mTAb1, an antibody that activates the mTOR protein kinase. The effects of insulin on increasing mTOR protein kinase activity and on decreasing mTAb1 reactivity were abolished by incubating mTOR with protein phosphatase 1. Interestingly, the epitope for mTAb1 is located near the COOH terminus of mTOR in a 20-amino acid region that includes consensus sites for phosphorylation by protein kinase B (PKB). Experiments were performed in MER-Akt cells to investigate the role of PKB in controlling mTOR. These cells express a PKB-mutant estrogen receptor fusion protein that is activated when the cells are exposed to 4-hydroxytamoxifen. Activating PKB with 4-hydroxytamoxifen mimicked insulin by decreasing mTOR reactivity with mTAb1 and by increasing the PHAS-I kinase activity of mTOR. Our findings support the conclusion that insulin activates mTOR by promoting phosphorylation of the protein via a signaling pathway that contains PKB.
Resumo:
The Drosophila retinal degeneration C (rdgC) gene encodes an unusual protein serine/threonine phosphatase in that it contains at least two EF-hand motifs at its carboxy terminus. By a combination of large-scale sequencing of human retina cDNA clones and searches of expressed sequence tag and genomic DNA databases, we have identified two sequences in mammals [Protein Phosphatase with EF-hands-1 and 2 (PPEF-1 and PPEF-2)] and one in Caenorhabditis elegans (PPEF) that closely resemble rdgC. In the adult, PPEF-2 is expressed specifically in retinal rod photoreceptors and the pineal. In the retina, several isoforms of PPEF-2 are predicted to arise from differential splicing. The isoform that most closely resembles rdgC is localized to rod inner segments. Together with the recently described localization of PPEF-1 transcripts to primary somatosensory neurons and inner ear cells in the developing mouse, these data suggest that the PPEF family of protein serine/threonine phosphatases plays a specific and conserved role in diverse sensory neurons.
Resumo:
Deletions of all or part of chromosome 10 are the most common genetic alterations in high-grade gliomas. The PTEN gene (also called MMAC1 and TEP1) maps to chromosome region 10q23 and has been implicated as a target of alteration in gliomas and also in other cancers such as those of the breast, prostate, and kidney. Here we sought to provide a functional test of its candidacy as a growth suppressor in glioma cells. We used a combination of Northern blot analysis, protein truncation assays, and sequence analysis to determine the types and frequency of PTEN mutations in glioma cell lines so that we could define appropriate recipients to assess the growth suppressive function of PTEN by gene transfer. Introduction of wild-type PTEN into glioma cells containing endogenous mutant alleles caused growth suppression, but was without effect in cells containing endogenous wild-type PTEN. The ectopic expression of PTEN alleles, which carried mutations found in primary tumors and have been shown or are expected to inactivate its phosphatase activity, caused little growth suppression. These data strongly suggest that PTEN is a protein phosphatase that exhibits functional and specific growth-suppressing activity.
Resumo:
PTEN/MMAC1 is a tumor suppressor gene located on chromosome 10q23. Inherited PTEN/MMAC1 mutations are associated with a cancer predisposition syndrome known as Cowden’s disease. Somatic mutation of PTEN has been found in a number of malignancies, including glioblastoma, melanoma, and carcinoma of the prostate and endometrium. The protein product (PTEN) encodes a dual-specificity protein phosphatase and in addition can dephosphorylate certain lipid substrates. Herein, we show that PTEN protein induces a G1 block when reconstituted in PTEN-null cells. A PTEN mutant associated with Cowden’s disease (PTEN;G129E) has protein phosphatase activity yet is defective in dephosphorylating inositol 1,3,4,5-tetrakisphosphate in vitro and fails to arrest cells in G1. These data suggest a link between induction of a cell-cycle block by PTEN and its ability to dephosphorylate, in vivo, phosphatidylinositol 3,4,5-trisphosphate. In keeping with this notion, PTEN can inhibit the phosphatidylinositol 3,4,5-trisphosphate-dependent Akt kinase, a downstream target of phosphatidylinositol 3-kinase, and constitutively active, but not wild-type, Akt overrides a PTEN G1 arrest. Finally, tumor cells lacking PTEN contain high levels of activated Akt, suggesting that PTEN is necessary for the appropriate regulation of the phosphatidylinositol 3-kinase/Akt pathway.
Resumo:
G-substrate, an endogenous substrate for cGMP-dependent protein kinase, exists almost exclusively in cerebellar Purkinje cells, where it is possibly involved in the induction of long-term depression. A G-substrate cDNA was identified by screening expressed sequence tag databases from a human brain library. The deduced amino acid sequence of human G-substrate contained two putative phosphorylation sites (Thr-68 and Thr-119) with amino acid sequences [KPRRKDT(p)PALH] that were identical to those reported for rabbit G-substrate. G-substrate mRNA was expressed almost exclusively in the cerebellum as a single transcript. The human G-substrate gene was mapped to human chromosome 7p15 by radiation hybrid panel analysis. In vitro translation products of the cDNA showed an apparent molecular mass of 24 kDa on SDS/PAGE which was close to that of purified rabbit G-substrate (23 kDa). Bacterially expressed human G-substrate is a heat-stable and acid-soluble protein that cross-reacts with antibodies raised against rabbit G-substrate. Recombinant human G-substrate was phosphorylated efficiently by cGMP-dependent protein kinase exclusively at Thr residues, and it was recognized by antibodies specific for rabbit phospho-G-substrate. The amino acid sequences surrounding the sites of phosphorylation in G-substrate are related to those around Thr-34 and Thr-35 of the dopamine- and cAMP-regulated phosphoprotein DARPP-32 and inhibitor-1, respectively, two potent inhibitors of protein phosphatase 1. However, purified G-substrate phosphorylated by cGMP-dependent protein kinase inhibited protein phosphatase 2A more effectively than protein phosphatase 1, suggesting a distinct role as a protein phosphatase inhibitor.
Resumo:
To investigate the involvement of protein kinases in the signaling cascade that leads to hypersensitive cell death, we used a previously established system in which a fungal elicitor, xylanase from Trichoderma viride (TvX), induces a hypersensitive reaction in tobacco (Nicotiana tabacum) cells in culture (line XD6S). The elicitor induced the slow and prolonged activation of a p47 protein kinase, which has the characteristics of a family member of the mitogen-activated protein kinases. An inhibitor of protein kinases, staurosporine, and a blocker of Ca channels, Gd3+ ions, both of which blocked the TvX-induced hypersensitive cell death, inhibited the TvX-induced activation of p47 protein kinase. Moreover, an inhibitor of serine/threonine protein phosphatase alone induced both rapid cell death and the persistent activation of the p47 protein kinase. Thus, the p47 protein kinase might be a component of the signal transduction pathway that leads to hypersensitive cell death, and the regulation of the duration of activation of the p47 protein kinase might be important in determining the destiny of tobacco cells.
Resumo:
Exit from mitosis in budding yeast requires inactivation of cyclin-dependent kinases through mechanisms triggered by the protein phosphatase Cdc14. Cdc14 activity, in turn, is regulated by a group of proteins, the mitotic exit network (MEN), which includes Lte1, Tem1, Cdc5, Cdc15, Dbf2/Dbf20, and Mob1. The direct biochemical interactions between the components of the MEN remain largely unresolved. Here, we investigate the mechanisms that underlie activation of the protein kinase Dbf2. Dbf2 kinase activity depended on Tem1, Cdc15, and Mob1 in vivo. In vitro, recombinant protein kinase Cdc15 activated recombinant Dbf2, but only when Dbf2 was bound to Mob1. Conserved phosphorylation sites Ser-374 and Thr-544 (present in the human, Caenorhabditis elegans, and Drosophila melanogaster relatives of Dbf2) were required for DBF2 function in vivo, and activation of Dbf2-Mob1 by Cdc15 in vitro. Although Cdc15 phosphorylated Dbf2, Dbf2–Mob1, and Dbf2(S374A/T544A)–Mob1, the pattern of phosphate incorporation into Dbf2 was substantially altered by either the S374A T544A mutations or omission of Mob1. Thus, Cdc15 promotes the exit from mitosis by directly switching on the kinase activity of Dbf2. We propose that Mob1 promotes this activation process by enabling Cdc15 to phosphorylate the critical Ser-374 and Thr-544 phosphoacceptor sites of Dbf2.
Resumo:
Increasing evidence suggests that changes in cytosolic Ca2+ levels and phosphorylation play important roles in the regulation of stomatal aperture and as ion transporters of guard cells. However, protein kinases responsible for Ca2+ signaling in guard cells remain to be identified. Using biochemical approaches, we have identified a Ca2+-dependent protein kinase with a calmodulin-like domain (CDPK) in guard cell protoplasts of Vicia faba. Both autophosphorylation and catalytic activity of CDPK are Ca2+ dependent. CDPK exhibits a Ca2+-induced electrophoretic mobility shift and its Ca2+-dependent catalytic activity can be inhibited by the calmodulin antagonists trifluoperazine and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide. Antibodies to soybean CDPKα cross-react with CDPK. Micromolar Ca2+ concentrations stimulate phosphorylation of several proteins from guard cells; cyclosporin A, a specific inhibitor of the Ca2+-dependent protein phosphatase calcineurin enhances the Ca2+-dependent phosphorylation of several soluble proteins. CDPK from guard cells phosphorylates the K+ channel KAT1 protein in a Ca2+-dependent manner. These results suggest that CDPK may be an important component of Ca2+ signaling in guard cells.
Resumo:
Bovine pyruvate dehydrogenase phosphatase (PDP) is a Mg2+-dependent and Ca2+-stimulated heterodimer that is a member of the protein phosphatase 2C family and is localized to mitochondria. Insight into the function of the regulatory subunit of PDP (PDPr) has been gained. It decreases the sensitivity of the catalytic subunit of PDP (PDPc) to Mg2+. The apparent Km of PDPc for Mg2+ is increased about 5-fold, from about 0.35 mM to 1.6 mM. The polyamine spermine increases the sensitivity of PDP but not PDPc to Mg2+, apparently by interacting with PDPr. PDPc but not PDP can use the phosphopeptide RRAT(P)VA as a substrate. These observations are interpreted to indicate that PDPr blocks or distorts the active site of PDPc and that spermine produces a conformational change in PDPr that reverses its inhibitory effect. These findings suggest that PDPr may be involved in the insulin-induced activation of the mitochondrial PDP in adipose tissue, which is characterized by a decrease in its apparent Km for Mg2+.
Resumo:
Using SDS/polyacrylamide gels that contained myelin basic protein, we identified a 46-kDa protein kinase in tobacco that is transiently activated by cutting. Although the activity of the kinase was rarely detectable in mature leaves, marked activity became apparent within several minutes after isolation of leaf discs and subsided within 30 min. In the presence of cycloheximide (CHX), the kinase activity did not diminish after the isolation over the course of 2 hr, suggesting that protein synthesis was not required for the activation of the kinase. A second cutting of leaf discs between 30 min and 60 min after the isolation failed to activate the kinase, whereas a second cutting given 3 hr after isolation apparently activated the kinase. These results suggest that the 46-kDa protein kinase is desensitized immediately after the first activation, which can be blocked by CHX, but the response ability recovers with time. When protein extracts containing the active kinase were treated with serine/threonine-specific or tyrosine-specific protein phosphatase, the kinase activity was abolished. After immunoprecipitation with antibody against phosphotyrosine, activity of the kinase was recovered in the immunoprecipitate. These results suggest that the active form of the kinase is phosphorylated at both serine/threonine and tyrosine residues. It seems likely that the 46-kDa protein kinase can be activated by dual phosphorylation. The activity of a 46-kDa protein kinase was also detected in leaves of a wide variety of plant species including dicotyledonous and monocotyledonous plants. We propose the name PMSAP (plant multisignal-activated protein) kinase for this kinase because the kinase was also activated by various signals other than cutting.
Resumo:
Purple acid phosphatases (PAPs) are a family of binuclear metalloenzymes that catalyze the hydrolysis of phosphoric acid esters and anhydrides. A PAP in sweet potato has a unique, strongly antiferromagnetically coupled Fe(III)-Mn(II) center and is distinguished from other PAPs by its increased catalytic efficiency for a range of activated and unactivated phosphate esters, its strict requirement for Mn(II), and the presence of a mu-oxo bridge at pH 4.90. This enzyme displays maximum catalytic efficiency (k(cat)/K-m) at pH 4.5, whereas its catalytic rate constant (k(cat)) is maximal at near-neutral pH, and, in contrast to other PAPs, its catalytic parameters are not dependent on the pK(a) of the leaving group. The crystal structure of the phosphate-bound Fe(III)-Mn(II) PAP has been determined to 2.5-Angstrom resolution (final R-free value of 0.256). Structural comparisons of the active site of sweet potato, red kidney bean, and mammalian PAPs show several amino acid substitutions in the sweet potato enzyme that can account for its increased catalytic efficiency. The phosphate molecule binds in an unusual tripodal mode to the two metal ions, with two of the phosphate oxygen atoms binding to Fe(III) and Mn(II), a third oxygen atom bridging the two metal ions, and the fourth oxygen pointing toward the substrate binding pocket. This binding mode is unique among the known structures in this family but is reminiscent of phosphate binding to urease and of sulfate binding to A protein phosphatase. The structure and kinetics support the hypothesis that the bridging oxygen atom initiates hydrolysis.
Resumo:
Proteolysis-inducing factor (PIF), a tumour-produced cachectic factor, induced a dose-dependent decrease in protein synthesis in murine myotubes, together with an increase in phosphorylation of eucaryotic initiation factor 2 (eIF2) on the alpha-subunit. Both insulin (1 nM) and insulin-like growth factor I (IGF-I) (13.2 nM) attenuated the depression of protein synthesis by PIF and the increased phosphorylation of eIF2alpha, by inhibiting the activation (autophosphorylation) of the dsRNA-dependent protein kinase (PKR) by induction of protein phosphatase 1. A low-molecular weight inhibitor of PKR also reversed the depression of protein synthesis by PIF to the same extent, as did insulin and IGF-I. Both insulin and IGF-I-stimulated protein synthesis in the presence of PIF, and this was attenuated by Salubrinal, an inhibitor of phospho eIF2alpha phosphatase, suggesting that at least part of this action was due to their ability to inhibit phosphorylation of eIF2alpha. Both insulin and IGF-I also attenuated the induction of protein degradation in myotubes induced by PIF, this effect was also attenuated by Salubrinal. These results suggest an alternative mechanism involving PKR to explain the effect of insulin and IGF-I on protein synthesis and degradation in skeletal muscle in the presence of catabolic factors.
Resumo:
Insulin-like growth factor-I (IGF-I) has been shown to attenuate protein degradation in murine myotubes induced by angiotensin II through downregulation of the ubiquitin-proteasome pathway, although the mechanism is not known. Angiotensin II is known to upregulate this pathway through a cellular signalling mechanism involving release of arachidonic acid, activation of protein kinase Cα (PKCα), degradation of inhibitor-κB (I-κB) and nuclear migration of nuclear factor-κB (NF-κB), and all of these events were attenuated by IGF-I (13.2 nM). Induction of the ubiquitin-proteasome pathway has been linked to activation of the RNA-activated protein kinase (PKR), since an inhibitor of PKR attenuated proteasome expression and activity in response to angiotensin II and prevented the decrease in the myofibrillar protein myosin. Angiotensin II induced phosphorylation of PKR and of the eukaryotic initiation factor-2 (eIF2) on the α-subunit, and this was attenuated by IGF-I, by induction of the expression of protein phosphatase 1, which dephosphorylates PKR. Release of arachidonic acid and activation of PKCα by angiotensin II were attenuated by an inhibitor of PKR and IGF-I, and the effect was reversed by Salubrinal (15 μM), an inhibitor of eIF2α dephosphorylation, as was activation of PKCα. In addition myotubes transfected with a dominant-negative PKR (PKRΔ6) showed no release of arachidonate in response to Ang II, and no activation of PKCα. These results suggest that phosphorylation of PKR by angiotensin II was responsible for the activation of the PLA2/PKC pathway leading to activation of NF-κB and that IGF-I attenuates protein degradation due to an inhibitory effect on activation of PKR. © 2007 Elsevier Inc. All rights reserved.