596 resultados para Lagrange multipliers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let Wm,p denote the Sobolev space of functions on Image n whose distributional derivatives of order up to m lie in Lp(Image n) for 1 less-than-or-equals, slant p less-than-or-equals, slant ∞. When 1 < p < ∞, it is known that the multipliers on Wm,p are the same as those on Lp. This result is true for p = 1 only if n = 1. For, we prove that the integrable distributions of order less-than-or-equals, slant1 whose first order derivatives are also integrable of order less-than-or-equals, slant1, belong to the class of multipliers on Wm,1 and there are such distributions which are not bounded measures. These distributions are also multipliers on Lp, for 1 < p < ∞. Moreover, they form exactly the multiplier space of a certain Segal algebra. We have also proved that the multipliers on Wm,l are necessarily integrable distributions of order less-than-or-equals, slant1 or less-than-or-equals, slant2 accordingly as m is odd or even. We have obtained the multipliers from L1(Image n) into Wm,p, 1 less-than-or-equals, slant p less-than-or-equals, slant ∞, and the multiplier space of Wm,1 is realised as a dual space of certain continuous functions on Image n which vanish at infinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a feedback system consisting of a transfer function $G(s)$ in the forward path and a time-varying gain $n(t)(0 \leqq n(t) \leqq k)$ in the feedback loop, a stability multiplier $Z(s)$ has been constructed (and used to prove stability) by Freedman [2] such that $Z(s)(G(s) + {1 / K})$ and $Z(s - \sigma )(0 < \sigma < \sigma _ * )$ are strictly positive real, where $\sigma _ * $ can be computed from a knowledge of the phase-angle characteristic of $G(i\omega ) + {1 / k}$ and the time-varying gain $n(t)$ is restricted by $\sigma _ * $ by means of an integral inequality. In this note it is shown that an improved value for $\sigma _ * $ is possible by making some modifications in his derivation. ©1973 Society for Industrial and Applied Mathematics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the analysis of the absolute stability of a non-linear autonomous system which consists of a single non-linearity belonging to a particular class, in an otherwise linear feedback loop. It is motivated from the earlier Popovlike frequency-domain criteria using the ' multiplier ' eoncept and involves the construction of ' stability multipliers' with prescribed phase characteristics. A few computer-based methods by which this problem can be solved are indicated and it is shown that this constitutes a stop-by-step procedure for testing the stability properties of a given system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today finite element method is a well established tool in engineering analysis and design. Though there axe many two and three dimensional finite elements available, it is rare that a single element performs satisfactorily in majority of practical problems. The present work deals with the development of 4-node quadrilateral element using extended Lagrange interpolation functions. The classical univariate Lagrange interpolation is well developed for 1-D and is used for obtaining shape functions. We propose a new approach to extend the Lagrange interpolation to several variables. When variables axe more than one the method also gives the set of feasible bubble functions. We use the two to generate shape function for the 4-node arbitrary quadrilateral. It will require the incorporation of the condition of rigid body motion, constant strain and Navier equation by imposing necessary constraints. The procedure obviates the need for isoparametric transformation since interpolation functions are generated for arbitrary quadrilateral shapes. While generating the element stiffness matrix, integration can be carried out to the accuracy desired by dividing the quadrilateral into triangles. To validate the performance of the element which we call EXLQUAD4, we conduct several pathological tests available in the literature. EXLQUAD4 predicts both stresses and displacements accurately at every point in the element in all the constant stress fields. In tests involving higher order stress fields the element is assured to converge in the limit of discretisation. A method thus becomes available to generate shape functions directly for arbitrary quadrilateral. The method is applicable also for hexahedra. The approach should find use for development of finite elements for use with other field equations also.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are a number of large networks which occur in many problems dealing with the flow of power, communication signals, water, gas, transportable goods, etc. Both design and planning of these networks involve optimization problems. The first part of this paper introduces the common characteristics of a nonlinear network (the network may be linear, the objective function may be non linear, or both may be nonlinear). The second part develops a mathematical model trying to put together some important constraints based on the abstraction for a general network. The third part deals with solution procedures; it converts the network to a matrix based system of equations, gives the characteristics of the matrix and suggests two solution procedures, one of them being a new one. The fourth part handles spatially distributed networks and evolves a number of decomposition techniques so that we can solve the problem with the help of a distributed computer system. Algorithms for parallel processors and spatially distributed systems have been described.There are a number of common features that pertain to networks. A network consists of a set of nodes and arcs. In addition at every node, there is a possibility of an input (like power, water, message, goods etc) or an output or none. Normally, the network equations describe the flows amoungst nodes through the arcs. These network equations couple variables associated with nodes. Invariably, variables pertaining to arcs are constants; the result required will be flows through the arcs. To solve the normal base problem, we are given input flows at nodes, output flows at nodes and certain physical constraints on other variables at nodes and we should find out the flows through the network (variables at nodes will be referred to as across variables).The optimization problem involves in selecting inputs at nodes so as to optimise an objective function; the objective may be a cost function based on the inputs to be minimised or a loss function or an efficiency function. The above mathematical model can be solved using Lagrange Multiplier technique since the equalities are strong compared to inequalities. The Lagrange multiplier technique divides the solution procedure into two stages per iteration. Stage one calculates the problem variables % and stage two the multipliers lambda. It is shown that the Jacobian matrix used in stage one (for solving a nonlinear system of necessary conditions) occurs in the stage two also.A second solution procedure has also been imbedded into the first one. This is called total residue approach. It changes the equality constraints so that we can get faster convergence of the iterations.Both solution procedures are found to coverge in 3 to 7 iterations for a sample network.The availability of distributed computer systems — both LAN and WAN — suggest the need for algorithms to solve the optimization problems. Two types of algorithms have been proposed — one based on the physics of the network and the other on the property of the Jacobian matrix. Three algorithms have been deviced, one of them for the local area case. These algorithms are called as regional distributed algorithm, hierarchical regional distributed algorithm (both using the physics properties of the network), and locally distributed algorithm (a multiprocessor based approach with a local area network configuration). The approach used was to define an algorithm that is faster and uses minimum communications. These algorithms are found to converge at the same rate as the non distributed (unitary) case.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that Riesz transforms associated to the Grushin operator G = -Delta - |x|(2 similar to) (t) (2) are bounded on L (p) (a''e (n+1)). We also establish an analogue of the Hormander-Mihlin Multiplier Theorem and study Bochner-Riesz means associated to the Grushin operator. The main tools used are Littlewood-Paley theory and an operator-valued Fourier multiplier theorem due to L. Weis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we deal with a variation of a theorem of Mauceri concerning the L-P boundedness of operators M which are known to be bounded on L-2. We obtain sufficient conditions on the kernel of the operator M so that it satisfies weighted L-P estimates. As an application we prove L-P boundedness of Hermite pseudo-multipliers. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

介绍由Lagrange实验、分析及拟合,得到未知材料的动态本构方程的方法。实验在轻气炮上进行,测量多点应力历程,经Lagrange分析得到数值本构关系,再拟合得到可供设计计算使用的动态本构方程。给出酚醛玻璃钢受冲击载荷时,一维应变状态下的一个本构方程。方程计算值与实测结果一致。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The note presents a method of constructing dynamic constitutive equations of material by means of Lagrange experiment and analysis. Tests were carried out by a light gas gun and the stress history profiles were recorded on multiple Lagrange positions. The dynamic constitutive equations were deduced from the regression of a series of data which was obtained by Lagrange analysis based upon recorded multiple stress histories. Here constitutive equations of glass fibre reinforced phenolic resin composite(GFRP) in uniaxil strain state under dynamic loading are given. The proposed equations of the material agree well with experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbomáquinas são máquinas operacionais que transferem energia mecânica entre um rotor e um fluido. Estas máquinas têm muitas aplicações industriais. Um dos componentes de uma turbomáquina responsável pela transferência da energia, ou receber a rotação do eixo e transformar em energia de fluido em caso de bomba ou transferir a energia do fluido para o eixo em caso de uma turbina, é o impelidor ou rotor. O fenómeno da cavitação envolve escoamento bifásico: o líquido a ser bombeado e as bolhas de vapor que são formadas durante o processo de bombeamento. O processo de formação dessas bolhas é complexo, mas ocorre principalmente devido a presença de regiões de pressões muito baixas. O colapso dessas bolhas pode muitas vezes levar a deterioração do material, dependendo da intensidade ou da velocidade de colapso das bolhas. O principal objetivo deste trabalho foi estudar o comportamento hidrodinâmico do escoamento nos canais do impelidor de uma turbomáquina do tipo radial usando recursos de fluidodinâmica computacional (CFD). Uma abordagem Euler-Lagrange acoplada com o modelo da equação de Langevin foi empregada para estimar a trajetória das bolhas. Resultados das simulações mostram as particularidades de um escoamento líquido-bolha de vapor passando em um canal de geometria curva, fornecendo assim informações que podem nos ajudar na prevenção da cavitação nessas máquinas.