972 resultados para Lactate thresholds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well established that lactate can be used as an energy substrate by the brain by conversion to pyruvate and a subsequent oxidation in the mitochondria. Knowing the need for readily metabolizable substrates directly after ischemia and the protective effect of lactate after excitotoxicity, the aim of this study was to investigate whether lactate administration directly after ischemia could be neuroprotective. In vitro, the addition of 4 mmol/L L-lactate to the medium of rat organotypic hippocampal slices, directly after oxygen and glucose deprivation (OGD), protected against neuronal death, whereas a higher dose of 20 mmol/L was toxic. In vivo, after middle cerebral artery occlusion in the mouse, an intracerebroventricular injection of 2 microL of 100 mmol/L L-lactate, immediately after reperfusion, led to a significant decrease in lesion size, which was more pronounced in the striatum, and an improvement in neurologic outcome. A later injection 1 h after reperfusion did not reduce lesion size, but significantly improved neurologic outcome, which is an important point in the context of a potential clinical application. Therefore, a moderate increase in lactate after ischemia may be a therapeutic tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astrocytes play a key role in the neurometabolic coupling through the glycogen metabolism and the ''Astrocyte-Neuron Lactate Shuttle'' (ANLS). We previously reported that brain glycogen metabolism was affected by sleep deprivation (SD). Therefore, it is of prime interest to determine if a similar sleep loss also affects the ANLS functioning in astrocytes. To address this issue, we sleep deprived transgenic mice expressing the GFP under the control of the GFAP promoter and in which astrocytes can be isolated by FACS. The levels of expression of genes related to ANLS were assessed by qRT-PCR in the GFP-positive cells (GFPþ). The FVB/NTg( GFAP-GFP)Mes14/j mice were weaned at P20-P21 and underwent an instrumental 6 h SD at P23-P27. The SD was realized using the ''CaResS'' device which has been designed to minimize stress during SD. Control group corresponds to undisturbed mice. At the end of SD, mice were sacrificed and their cerebral cortex was rapidly dissected, cut in small pieces and enzymatically digested. After cell dissociation, GFPþ and GFP- cells were sorted by FACS and treated for RNA extraction. A quantitative RTPCR was realized using specific probes against different genes involved in ANLS. Results indicate that genes encoding the LDHb, the GLT1, the alpha2 subunit of the Na/KATPase pump as well as the GLUT1, were significantly increased in the GFPþ cells from SD mice. No significant change was observed in the GFP- cells from the same group. These results indicate that this approach is suitable to determine the transcriptional signature of SD in glial cells from juvenile animals. They also indicate that sleep loss induces transcriptional changes of genes involved in ANLS specifically in astrocytes. This could suggest that an adaptation of the ANLS at the transcriptional levels exists in pathophysiological conditions where neuronal activity is enhanced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The liver plays an important role in glucose and lactate metabolism. Major hepatectomy may therefore be suspected to cause alterations of glucose and lactate homeostasis. METHODS: Thirteen subjects were studied: six patients after major hepatectomy and seven healthy subjects who had fasted overnight. Glucose turnover was measured with 6,6(2)H glucose. Lactate metabolism was assessed using two complementary approaches: 13C-glucose synthesis and 13CO2 production from an exogenous 13C-labeled lactate load infused over 15 minutes were measured, then the plasma lactate concentrations observed over 185 minutes after lactate load were fitted using a biexponential model to calculate lactate clearance, endogenous production, and half-lives. RESULTS: Three to five liver segments were excised. Compared to healthy controls, the following results were observed in the patients: 1) normal endogenous glucose production; 2) unchanged 13C-lactate oxidation and transformation into glucose; 3) similar basal plasma lactate concentration, lactate clearance, and lactate endogenous production; 4) decreased plasma lactate half-life 1 and increased half-life 2. CONCLUSIONS: Glucose and lactate metabolism are well maintained in patients after major hepatectomy, demonstrating a large liver functional reserve. Reduction in the size of normal liver parenchyma does not lead to hyperlactatemia. The use of a pharmacokinetic model, however, allows the detection of subtle alterations of lactate metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: : Identification of children with elevated blood pressure (BP) is difficult because of the multiple sex, age, and height-specific thresholds to define elevated BP. We propose a simple set of absolute height-specific BP thresholds and evaluate their performance to identify children with elevated BP in two different populations. METHODS: : Using the 95th sex, age, and relative-height BP US thresholds to define elevated BP in children (standard criteria), we derived a set of (non sex- and non age-specific) absolute height-specific BP thresholds for 11 height categories by 10 cm increments. Using data from large school-based surveys conducted in Switzerland (N = 5207; 2621 boys, 2586 girls; age range: 10.1-14.9 years) and in the Seychelles (N = 25 759; 13 048 boys, 12 711 girls; age range: 4.4-18.8 years), we evaluated the performance of these height-specific thresholds to identify children with elevated BP. We also derived sex-specific absolute height-specific BP thresholds and compared their performance. RESULTS: : In the Swiss and the Seychelles surveys, the prevalence of elevated BP (standard criteria) was 11.4 and 9.1%, respectively. The height-specific thresholds to identify elevated BP had a sensitivity of 80 and 84%, a specificity of 99 and 99%, a positive predictive value of 92 and 91%, and a negative predictive value of 97 and 98%, respectively. Performance of sex-specific absolute height-specific BP thresholds was similar. CONCLUSION: : A simple table of height-specific BP thresholds allowed identifying children with elevated BP with high sensitivity and excellent specificity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduct ion The Surviving Sepsis Campaign (SSC) indicates that a lactate (LT) concentration greater than 4ımmol/l indicates early resuscitation bundles. However, several recent studies have suggested that LT values lower than 4ımmol/l may be a prognostic marker of adverse outcome. The aim of this study was to identify clinical and analytical prognostic parameters in severe sepsis (SS) or septic shock (ShS) according to quartiles of blood LT concentration. Methods A cohort study was designed in a polyvalent ICU. We studied demographic, clinical and analytical parameters in 148 critically ill adults, within 24ıhours from SS or ShS onset according to SSC criteria. We tested for diı erences in baseline characteristics by lactate interval using a KruskalıWallis test for continuous data or a chi-square test for categorical data and reported the median and interquartile ranges; SPSS version 15.0 (SPSS Inc., Chicago, IL, USA). Results We analyzed 148 consecutive episodes of SS (16%) or ShS (84%). The median age was 64 (interquartile range, 48.7 to 71)ıyears; male: 60%. The main sources of infection were respiratory tract 38% and intra-abdomen 45%; 70.7% had medical pathology. Mortality at 28ıdays was 22.7%. Quartiles of blood LT concentration were quartile 1 (Q1): 1.87ımmol/l or less, quartile 2 (Q2): 1.88 to 2.69ımmol/l, quartile 3 (Q3): 2.7 to 4.06ımmol/l, and quartile 4 (Q4): 4.07ımmol/l or greater (Tableı1). The median LT concentrations of each quartile were 1.43 (Q1), 2.2 (Q2), 3.34 (Q3), and 5.1 (Q4) mmol/l (Pı<0.001). The diı erences between these quartiles were that the patients in Q1 had signiı cantly lower APACHE II scores (Pı=ı0.04), SOFA score (Pı=ı0.024), number of organ failures (NOF) (Pı<0.001) and ICU mortality (Pı=ı0.028), compared with patients in Q2, Q3 and Q4. Patients in Q1 had signiı cantly higher cholesterol (Pı=ı0.06) and lower procalcitonin (Pı=ı0.05) at enrolment. At the extremes, patients in Q1 had decreased 28-day mortality (Pı=ı0.023) and, patients in Q4 had increased 28-day mortality, compared with the other quartiles of patients (Pı=ı0.009). Interestingly, patients in Q2 had signiı cant increased mortality compared with patients in Q1 (Pı=ı0.043), whereas the patients in Q2 had no signiı cant diı erence in 28-day mortality compared with patients in Q3. Conclusion Adverse outcomes and several potential risk factors, including organ failure, are signiı cantly associated with higher quartiles of LT concentrations. It may be useful to revise the cutoı value of lactate according to the SSC (4 mmol/l).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After the landmark studies reporting changes in the cerebral metabolic rate of glucose (CMRGlc ) in excess of those in oxygen (CMRO2 ) during physiological stimulation, several studies have examined the fate of the extra carbon taken up by the brain, reporting a wide range of changes in brain lactate from 20% to 250%. The present study reports functional magnetic resonance spectroscopy measurements at 7 Tesla using the enhanced sensitivity to study a small cohort (n = 6). Small increases in lactate (19% ± 4%, P < 0.05) and glutamate (4% ± 1%, P < 0.001) were seen within the first 2 min of activation. With the exception of glucose (12% ± 5%, P < 0.001), no other metabolite concentration changes beyond experimental error were significantly observed. Therefore, the present study confirms that lactate and glutamate changes during physiological stimulation are small (i.e. below 20%) and shows that the increased sensitivity allows reproduction of previous results with fewer subjects. In addition, the initial rate of glutamate and lactate concentration increases implies an increase in CMRO2 that is slightly below that of CMRGlc during the first 1-2 min of activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Experimental evidence suggests that lactate is neuroprotective after acute brain injury; however, data in humans are lacking. We examined whether exogenous lactate supplementation improves cerebral energy metabolism in humans with traumatic brain injury (TBI). METHODS: We prospectively studied 15 consecutive patients with severe TBI monitored with cerebral microdialysis (CMD), brain tissue PO2 (PbtO2), and intracranial pressure (ICP). Intervention consisted of a 3-h intravenous infusion of hypertonic sodium lactate (aiming to increase systemic lactate to ca. 5 mmol/L), administered in the early phase following TBI. We examined the effect of sodium lactate on neurochemistry (CMD lactate, pyruvate, glucose, and glutamate), PbtO2, and ICP. RESULTS: Treatment was started on average 33 ± 16 h after TBI. A mixed-effects multilevel regression model revealed that sodium lactate therapy was associated with a significant increase in CMD concentrations of lactate [coefficient 0.47 mmol/L, 95% confidence interval (CI) 0.31-0.63 mmol/L], pyruvate [13.1 (8.78-17.4) μmol/L], and glucose [0.1 (0.04-0.16) mmol/L; all p < 0.01]. A concomitant reduction of CMD glutamate [-0.95 (-1.94 to 0.06) mmol/L, p = 0.06] and ICP [-0.86 (-1.47 to -0.24) mmHg, p < 0.01] was also observed. CONCLUSIONS: Exogenous supplemental lactate can be utilized aerobically as a preferential energy substrate by the injured human brain, with sparing of cerebral glucose. Increased availability of cerebral extracellular pyruvate and glucose, coupled with a reduction of brain glutamate and ICP, suggests that hypertonic lactate therapy has beneficial cerebral metabolic and hemodynamic effects after TBI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: APACHE-II IS a score, based on several clinical and analytical measurements within 24 hours of admission in Intensive Care Unit (ICU). C-Reactive Protein (CRP), Lactate and recently Procalcitonin (PCT), also are biomarkers for the assessment of septic patients. The aim of this study was to find out if CRP, lactate and PCT during the first 24 hours from severe sepsis or septic shock onset, improved prediction of the APACHE II in terms of prognosis. Conclusions: CRP improves the prediction of patients with sepsis used in conjunction with the APACHE II score in severe sepsis and, lactate along with the CRP are the best precictors of survival in the cases of septic shock. The PCT did not show any predictive value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vertebrates, the interconversion of lactate and pyruvate is catalyzed by the enzyme lactate dehydrogenase. Two distinct subunits combine to form the five tetrameric isoenzymes of lactate dehydrogenase. The LDH-5 subunit (muscle type) has higher maximal velocity (Vmax) and is present in glycolytic tissues, favoring the formation of lactate from pyruvate. The LDH-1 subunit (heart type) is inhibited by pyruvate and therefore preferentially drives the reaction toward the production of pyruvate. There is mounting evidence indicating that during activation the brain resorts to the transient glycolytic processing of glucose. Indeed, transient lactate formation during physiological stimulation has been shown by 1H-magnetic resonance spectroscopy. However, since whole-brain arteriovenous studies under basal conditions indicate a virtually complete oxidation of glucose, the vast proportion of the lactate transiently formed during activation is likely to be oxidized. These in vivo data suggest that lactate may be formed in certain cells and oxidized in others. We therefore set out to determine whether the two isoforms of lactate dehydrogenase are localized to selective cell types in the human brain. We report here the production and characterization of two rat antisera, specific for the LDH-5 and LDH-1 subunits of lactate dehydrogenase, respectively. Immunohistochemical, immunodot, and western-blot analyses show that these antisera specifically recognize their homologous antigens. Immunohistochemistry on 10 control cases demonstrated a differential cellular distribution between both subunits in the hippocampus and occipital cortex: neurons are exclusively stained with the anti-LDH1 subunit while astrocytes are stained by both antibodies. These observations support the notion of a regulated lactate flux between astrocytes and neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the role of glucose and lactate as energy substrates to sustain synaptic vesicle cycling. Synaptic vesicle turnover was assessed in a quantitative manner by fluorescence microscopy in primary cultures of mouse cortical neurons. An electrode-equipped perfusion chamber was used to stimulate cells both by electrical field and potassium depolarization during image acquisition. An image analysis procedure was elaborated to select in an unbiased manner synaptic boutons loaded with the fluorescent dye N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide (FM1-43). Whereas a minority of the sites fully released their dye content following electrical stimulation, others needed subsequent K(+) depolarization to achieve full release. This functional heterogeneity was not significantly altered by the nature of metabolic substrates. Repetitive stimulation sequences of FM1-43 uptake and release were then performed in the absence of any metabolic substrate and showed that the number of active sites dramatically decreased after the first cycle of loading/unloading. The presence of 1 mM glucose or lactate was sufficient to sustain synaptic vesicle cycling under these conditions. Moreover, both substrates were equivalent for recovery of function after a phase of decreased metabolic substrate availability. Thus, lactate appears to be equivalent to glucose for sustaining synaptic vesicle turnover in cultured cortical neurons during activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Axons, and particularly regenerating axons, have high metabolic needs in order to maintain critical functions such as axon transport and membrane depolarization. Though some of the required energy likely comes form extracellular glucose and ATP generated in the soma, we and others hypothesize that some of the energy may be supplied by lactate. Unlike glucose that requires glycolytic enzymes to produce pyruvate, lactate can be converted directly to pyruvate by lactate dehydrogenase and transported into mitochondria for oxidative metabolism. In order to be transported into or out of cells, lactate requires specific monocarboxylate transporters (MCTs), the most abundant of which is MCT1. If MCT1 and lactate are critical for nerve function and regeneration, we hypothesize that MCT1 heterozygote null mice, which appear phenotypically normal despite having approximately 40% MCT1 as compared to wildtype littermate mice, would have reduced capacity for repair following nerve injury. To investigate this, adult MCT1 heterozygote null mice or wild-type mice underwent unilateral sciatic nerve crush in the proximal thigh. We found that regeneration of the sciatic nerve, as measured by recovery of compound muscle action potentials (CMAP) in the lateral plantar muscles following proximal sciatic nerve stimulation, was delayed from a median of 21 days in wildtype mice to 38.5 days in MCT1 heterozygote mice. In fact, half of the MCT1 heterozygote null mice had no recovery of CMAP by the endpoint of the study at 42 days, while all of the wild-type mice had recovered. In addition, the maximal amplitude of CMAP recovery in MCT1 heterozygote mull mice was reduced from a mean of 3 mV to 0.5 mV. As would be expected, the denervated gastrocnemius muscle of MCT1 heterozygote null mice remained atrophic at 42 days compared to wild-type mice. Our experiments show that lactate supplied through MCT1 is necessary for nerve regeneration. Experiments are underway to determine whether loss of MCT1 prevents nerve regrowth directly due to reduced energy supply to axons or indirectly by dysfunctional Schwann cells normally dependent on lactate supply through MCT1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper derives approximations allowing the estimation of outage probability for standard irregular LDPC codes and full-diversity Root-LDPC codes used over nonergodic block-fading channels. Two separate approaches are discussed: a numerical approximation, obtained by curve fitting, for both code ensembles, and an analytical approximation for Root-LDPC codes, obtained under the assumption that the slope of the iterative threshold curve of a given code ensemble matches the slope of the outage capacity curve in the high-SNR regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatic glucose production is autoregulated during infusion of gluconeogenic precursors. In hyperglycemic patients with multiple trauma, hepatic glucose production and gluconeogenesis are increased, suggesting that autoregulation of hepatic glucose production may be defective. To better understand the mechanisms of autoregulation and its possible alterations in metabolic stress, lactate was coinfused with glucose in healthy volunteers and in hyperglycemic patients with multiple trauma or critical illness. In healthy volunteers, infusion of glucose alone nearly abolished endogenous glucose production. Lactate increased gluconeogenesis (as indicated by a decrease in net carbohydrate oxidation with no change in total [13C]carbohydrate oxidation) but did not increase endogenous glucose production. In patients with metabolic stress, endogenous glucose production was not suppressed by exogenous glucose, but lactate did not further increase hepatic glucose production. It is concluded that 1) in healthy humans, autoregulation of hepatic glucose production during infusion of lactate is still present when glycogenolysis is suppressed by exogenous glucose and 2) autoregulation of hepatic glucose production is not abolished in hyperglycemic patients with metabolic stress.