990 resultados para Label-free biosensor
Resumo:
El objetivo de la presente tesis doctoral es el desarrollo de un nuevo concepto de biosensor óptico sin marcado, basado en una combinación de técnicas de caracterización óptica de interrogación vertical y estructuras sub-micrométricas fabricadas sobre chips de silicio. Las características más importantes de dicho dispositivo son su simplicidad, tanto desde el punto de vista de medida óptica como de introducción de las muestras a medir en el área sensible, aspectos que suelen ser críticos en la mayoría de sensores encontrados en la literatura. Cada uno de los aspectos relacionados con el diseño de un biosensor, que son fundamentalmente cuatro (diseño fotónico, caracterización óptica, fabricación y fluídica/inmovilización química) son desarrollados en detalle en los capítulos correspondientes. En la primera parte de la tesis se hace una introducción al concepto de biosensor, en qué consiste, qué tipos hay y cuáles son los parámetros más comunes usados para cuantificar su comportamiento. Posteriormente se realiza un análisis del estado del arte en la materia, enfocado en particular en el área de biosensores ópticos sin marcado. Se introducen también cuáles son las reacciones bioquímicas a estudiar (inmunoensayos). En la segunda parte se describe en primer lugar cuáles son las técnicas ópticas empleadas en la caracterización: Reflectometría, Elipsometría y Espectrometría; además de los motivos que han llevado a su empleo. Posteriormente se introducen diversos diseños de las denominadas "celdas optofluídicas", que son los dispositivos en los que se va a producir la interacción bioquímica. Se presentan cuatro dispositivos diferentes, y junto con ellos, se proponen diversos métodos de cálculo teórico de la respuesta óptica esperada. Posteriormente se procede al cálculo de la sensibilidad esperada para cada una de las celdas, así como al análisis de los procesos de fabricación de cada una de ellas y su comportamiento fluídico. Una vez analizados todos los aspectos críticos del comportamiento del biosensor, se puede realizar un proceso de optimización de su diseño. Esto se realiza usando un modelo de cálculo simplificado (modelo 1.5-D) que permite la obtención de parámetros como la sensibilidad y el límite de detección de un gran número de dispositivos en un tiempo relativamente reducido. Para este proceso se escogen dos de las celdas optofluídicas propuestas. En la parte final de la tesis se muestran los resultados experimentales obtenidos. En primer lugar, se caracteriza una celda basada en agujeros sub-micrométricos como sensor de índice de refracción, usando para ello diferentes líquidos orgánicos; dichos resultados experimentales presentan una buena correlación con los cálculos teóricos previos, lo que permite validar el modelo conceptual presentado. Finalmente, se realiza un inmunoensayo químico sobre otra de las celdas propuestas (pilares nanométricos de polímero SU-8). Para ello se utiliza el inmunoensayo de albumina de suero bovino (BSA) y su anticuerpo (antiBSA). Se detalla el proceso de obtención de la celda, la funcionalización de la superficie con los bioreceptores (en este caso, BSA) y el proceso de biorreconocimiento. Este proceso permite dar una primera estimación de cuál es el límite de detección esperable para este tipo de sensores en un inmunoensayo estándar. En este caso, se alcanza un valor de 2.3 ng/mL, que es competitivo comparado con otros ensayos similares encontrados en la literatura. La principal conclusión de la tesis es que esta tipología de dispositivos puede ser usada como inmunosensor, y presenta ciertas ventajas respecto a los actualmente existentes. Estas ventajas vienen asociadas, de nuevo, a su simplicidad, tanto a la hora de medir ópticamente, como dentro del proceso de introducción de los bioanalitos en el área sensora (depositando simplemente una gota sobre la micro-nano-estructura). Los cálculos teorícos realizados en los procesos de optimización sugieren a su vez que el comportamiento del sensor, medido en magnitudes como límite de detección biológico puede ser ampliamente mejorado con una mayor compactación de pilares, alcanzandose un valor mínimo de 0.59 ng/mL). The objective of this thesis is to develop a new concept of optical label-free biosensor, based on a combination of vertical interrogation optical techniques and submicron structures fabricated over silicon chips. The most important features of this device are its simplicity, both from the point of view of optical measurement and regarding to the introduction of samples to be measured in the sensing area, which are often critical aspects in the majority of sensors found in the literature. Each of the aspects related to the design of biosensors, which are basically four (photonic design, optical characterization, fabrication and fluid / chemical immobilization) are developed in detail in the relevant chapters. The first part of the thesis consists of an introduction to the concept of biosensor: which elements consists of, existing types and the most common parameters used to quantify its behavior. Subsequently, an analysis of the state of the art in this area is presented, focusing in particular in the area of label free optical biosensors. What are also introduced to study biochemical reactions (immunoassays). The second part describes firstly the optical techniques used in the characterization: reflectometry, ellipsometry and spectrometry; in addition to the reasons that have led to their use. Subsequently several examples of the so-called "optofluidic cells" are introduced, which are the devices where the biochemical interactions take place. Four different devices are presented, and their optical response is calculated by using various methods. Then is exposed the calculation of the expected sensitivity for each of the cells, and the analysis of their fabrication processes and fluidic behavior at the sub-micrometric range. After analyzing all the critical aspects of the biosensor, it can be performed a process of optimization of a particular design. This is done using a simplified calculation model (1.5-D model calculation) that allows obtaining parameters such as sensitivity and the detection limit of a large number of devices in a relatively reduced time. For this process are chosen two different optofluidic cells, from the four previously proposed. The final part of the thesis is the exposition of the obtained experimental results. Firstly, a cell based sub-micrometric holes is characterized as refractive index sensor using different organic fluids, and such experimental results show a good correlation with previous theoretical calculations, allowing to validate the conceptual model presented. Finally, an immunoassay is performed on another typology of cell (SU-8 polymer pillars). This immunoassay uses bovine serum albumin (BSA) and its antibody (antiBSA). The processes for obtaining the cell surface functionalization with the bioreceptors (in this case, BSA) and the biorecognition (antiBSA) are detailed. This immunoassay can give a first estimation of which are the expected limit of detection values for this typology of sensors in a standard immunoassay. In this case, it reaches a value of 2.3 ng/mL, which is competitive with other similar assays found in the literature. The main conclusion of the thesis is that this type of device can be used as immunosensor, and has certain advantages over the existing ones. These advantages are associated again with its simplicity, by the simpler coupling of light and in the process of introduction of bioanalytes into the sensing areas (by depositing a droplet over the micro-nano-structure). Theoretical calculations made in optimizing processes suggest that the sensor Limit of detection can be greatly improved with higher compacting of the lattice of pillars, reaching a minimum value of 0.59 ng/mL).
Resumo:
We describe the development of a label free method to analyze the interactions between Ca(2+) and the porcine S100A12 protein immobilized on polyvinyl butyral (PVB). The modified gold electrodes were characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface plasmon resonance (SPR) techniques. SEM analyses of PVB and PVB-S100A12 showed a heterogeneous distribution of PVB spherules on gold surface. EIS and CV measurements have shown that redox probe reactions on the modified gold electrodes were partially blocked due the adsorption of PVB-S100A12, and confirm the existence of a positive response of the immobilized S100Al2 to the presence of calcium ions. The biosensor exhibited a wide linear response to Ca(2+) concentrations ranging from 12.5 to 200 mM. The PVB-S100A12 seems to be bound to the gold electrode surface by physical adsorption: we observed an increase of 1184.32 m degrees in the SPR angle after the adsorption of the protein on the PVB surface (in an indication that 9.84 ng of S100A12 are adsorbed per mm(2) of the Au-PVB electrode), followed by a further increase of 581.66 m degrees after attachment of the Ca(2+) ions. In addition, no SPR response is obtained for non-specific ions. These studies might be useful as a platform for the design of new reusable and sensitive biosensing devices that could find use in the clinical applications. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present the development and simplification of label-free fiber optic biosensors based on immobilization of oligonucleotides on dual-peak long period gratings (dLPGs). This improvement is the result of a simplification of biofunctionalization methodology. A one-step 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated reaction has been developed for the straightforward immobilization of unmodified oligonucleotides on the glass fiber surface along the grating region, leading to covalent attachment of a 5´-phosphorylated probe oligonucleotide to the amino-derivatized fiber grating surface. Immobilization is achieved via a 5´phosphate-specific linkage, leaving the remainder of the oligonucleotide accessible for binding reactions. The dLPG has been tested in different external media to demonstrate its inherent ultrahigh sensitivity to the surrounding-medium refractive index (RI) achieving 50- fold improvement in RI sensitivity over the previously-published LPG sensor in media with RI’s relevant to biological assays. After functionalization, the dLPG biosensor was used to monitor the hybridization of complementary oligonucleotides showing a detectable oligonucleotide concentration of 4 nM. The proposed one-step EDC reaction approach can be further extended to develop fiber optic biosensors for disease analysis and medical diagnosis with the advances of label-free, real-time, multiplex, high sensitivity and specificity.
Resumo:
We report a highly sensitive, high Q-factor, label free and selective glucose sensor by using excessively tilted fiber grating (Ex-TFG) inscribed in the thin-cladding optical fiber (TCOF). Glucose oxidase (GOD) was covalently immobilized on optical fiber surface and the effectiveness of GOD immobilization was investigated by the fluorescence microscopy and highly accurate spectral interrogation method. In contrast to the long period grating (LPG) and optical fiber (OF) surface Plasmon resonance (SPR) based glucose sensors, the Ex-TFG configuration has merits of nearly independent cross sensitivity of the environmental temperature, simple fabrication method (no noble metal deposition or cladding etching) and high detection accuracy (or Q-factor). Our experimental results have shown that Ex-TFG in TCOF based sensor has a reliable and fast detection for the glucose concentration as low as 0.1~2.5mg/ml and a high sensitivity of ~1.514nm·(mg/ml)−1, which the detection accuracy is ~0.2857nm−1 at pH 5.2, and the limit of detection (LOD) is 0.013~0.02mg/ml at the pH range of 5.2~7.4 by using an optical spectrum analyzer with a resolution of 0.02nm.
Resumo:
1st ASPIC International Congress
Resumo:
A novel strategy for enhanced field-effect biosensing using capacitive electrolyte-insulator-semiconductor (EIS) structures functionalised with pH-responsive weak polyelectrolyte/enzyme or dendrimer/enzyme multilayers is presented. The feasibility of the proposed approach is exemplarily demonstrated by realising a penicillin biosensor based on a capacitive p-Si-SiO(2) EIS structure functionalised with a poly(allylamine hydrochloride) (PAH)/penicillinase and a poly(amidoamine) dendrimer/penicillinase multilayer. The developed sensors response to changes in both the local pH value near the gate surface and the charge of macromolecules induced via enzymatic reaction, resulting in a higher sensitivity. For comparison, an EIS penicillin biosensor with adsorptively immobilised penicillinase has been also studied. The highest penicillin sensitivity of 100 mV/dec has been observed for the EIS sensor functionalised with the PAH/penicillinase multilayer. The lower and upper detection limit was around 20 mu M and 10 mM, respectively. In addition, an incorporation of enzymes in a multilayer prepared by layer-by-layer technique provides a larger amount of immobilised enzymes per sensor area, reduces enzyme leaching effects and thus, enhances the biosensor lifetime (the loss of penicillin sensitivity after 2 months was 10-12%). (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
The promising development in the routine nanofabrication and the increasing knowledge of the working principles of new classes of highly sensitive, label-free and possibly cost-effective bio-nanosensors for the detection of molecules in liquid environment, has rapidly increased the possibility to develop portable sensor devices that could have a great impact on many application fields, such as health-care, environment and food production, thanks to the intrinsic ability of these biosensors to detect, monitor and study events at the nanoscale. Moreover, there is a growing demand for low-cost, compact readout structures able to perform accurate preliminary tests on biosensors and/or to perform routine tests with respect to experimental conditions avoiding skilled personnel and bulky laboratory instruments. This thesis focuses on analysing, designing and testing novel implementation of bio-nanosensors in layered hybrid systems where microfluidic devices and microelectronic systems are fused in compact printed circuit board (PCB) technology. In particular the manuscript presents hybrid systems in two validating cases using nanopore and nanowire technology, demonstrating new features not covered by state of the art technologies and based on the use of two custom integrated circuits (ICs). As far as the nanopores interface system is concerned, an automatic setup has been developed for the concurrent formation of bilayer lipid membranes combined with a custom parallel readout electronic system creating a complete portable platform for nanopores or ion channels studies. On the other hand, referring to the nanowire readout hybrid interface, two systems enabling to perform parallel, real-time, complex impedance measurements based on lock-in technique, as well as impedance spectroscopy measurements have been developed. This feature enable to experimentally investigate the possibility to enrich informations on the bio-nanosensors concurrently acquiring impedance magnitude and phase thus investigating capacitive contributions of bioanalytical interactions on biosensor surface.
Resumo:
El objetivo de esta tesis es el desarrollo y caracterización de biosensores ópticos sin marcado basados en celdas sensoras biofotónicas (BICELLs). Éstas son un nuevo concepto de biosensor desarrollado por el grupo de investigación y consiste en la combinación de técnicas de interrogación vertical, junto a estructuras fotónicas producidas usando métodos de micro- y nanofabricación. Varias conclusiones son extraídas de este trabajo. La primera, que se ha definido una BICELL estándar basada en interferómetros Fabry-Perot (FP). Se ha demostrado su capacidad para la comparación de rendimiento entre BICELLs estructuradas y para la realización de inmunoensayos de bajo coste. Se han estudiado diferentes técnicas de fabricación disponibles para la producción de BICELLs. Se determinó que la litografía de contacto a nivel de oblea produce estructuras de bajo coste, reproducibles y de alta calidad. La resolución alcanzada ha sido de 700 nm. El estudio de la respuesta a inmunoensayos de las BICELLs producidas se ha desarrollado en este trabajo. Se estudió la influencia de BICELLs basadas en diferentes geometrías y tamaños. De aquí resulta un nuevo enfoque para predecir el comportamiento de respuesta para la detección biológica de cualquier biosensor óptico estructurado, relacionando su superficie efectiva y su sensibilidad óptica. También se demostró una técnica novedosa y de bajo coste para la caracterización experimental de la sensibilidad óptica, basada en el depósito de películas ultradelgadas. Finalmente, se ha demostrado el uso de BICELLs desarrolladas en esta tesis, en la detección de aplicaciones reales, tales como hormonas, virus y proteínas. ABSTRACT The objective of this thesis is the development and characterization of optical label-free biosensors based on Bio-Photonic sensing Cells (BICELLs). BICELL is a novel biosensor concept developed by the research group, and it consists of a combination of vertical interrogation optical techniques and photonic structures produced by using micro- and nano-fabrication methods. Several main conclusions are extracted from this work. Firstly, a standard BICELL is defined based on FP interferometers, which demonstrated its capacity for accomplishing performance comparisons among different structured BICELLs, as well as to achieve low-cost immunoassays. Different available fabrication techniques were studied for BICELL manufacturing. It is found that contact lithography at wafer scale produce cost-effective, reproducible and high quality structures. The resolution achieved was 700 nm. Study on the response of developed BICELLs to immunoassays is performed within this work. It is therefore studied the influence of BICELLs based on different geometries and sizes in the immunoassay, which resulted in a new approach to predict the biosensing behaviour of any structured optical biosensor relating to its effective surface and optical sensitivity. Also, it is demonstrated a novel and low-cost characterization technique of the experimental optical sensitivity, based on ultrathin-film deposition. Finally, it is also demonstrated the capability of using the developed BICELLs in this thesis for real applications detection of hormones, virus and proteins.
Resumo:
Surface Plasmon Resonance (SPR) and localized surface plasmon resonance (LSPR) biosensors have brought a revolutionary change to in vitro study of biological and biochemical processes due to its ability to measure extremely small changes in surface refractive index (RI), binding equilibrium and kinetics. Strategies based on LSPR have been employed to enhance the sensitivity for a variety of applications, such as diagnosis of diseases, environmental analysis, food safety, and chemical threat detection. In LSPR spectroscopy, absorption and scattering of light are greatly enhanced at frequencies that excite the LSPR, resulting in a characteristic extinction spectrum that depends on the RI of the surrounding medium. Compositional and conformational change within the surrounding medium near the sensing surface could therefore be detected as shifts in the extinction spectrum. This dissertation specifically focuses on the development and evaluation of highly sensitive LSPR biosensors for in situ study of biomolecular binding process by incorporating nanotechnology. Compared to traditional methods for biomolecular binding studies, LSPR-based biosensors offer real-time, label free detection. First, we modified the gold sensing surface of LSPR-based biosensors using nanomaterials such as gold nanoparticles (AuNPs) and polymer to enhance surface absorption and sensitivity. The performance of this type of biosensors was evaluated on the application of small heavy metal molecule binding affinity study. This biosensor exhibited ∼7 fold sensitivity enhancement and binding kinetics measurement capability comparing to traditional biosensors. Second, a miniaturized cell culture system was integrated into the LSPR-based biosensor system for the purpose of real-time biomarker signaling pathway studies and drug efficacy studies with living cells. To the best of our knowledge, this is the first LSPR-based sensing platform with the capability of living cell studies. We demonstrated the living cell measurement ability by studying the VEGF signaling pathway in living SKOV-3 cells. Results have shown that the VEGF secretion level from SKOV-3 cells is 0.0137 ± 0.0012 pg per cell. Moreover, we have demonstrated bevacizumab drug regulation to the VEGF signaling pathway using this biosensor. This sensing platform could potentially help studying biomolecular binding kinetics which elucidates the underlying mechanisms of biotransportation and drug delivery.
Resumo:
The absence of rapid, low cost and highly sensitive biodetection platform has hindered the implementation of next generation cheap and early stage clinical or home based point-of-care diagnostics. Label-free optical biosensing with high sensitivity, throughput, compactness, and low cost, plays an important role to resolve these diagnostic challenges and pushes the detection limit down to single molecule. Optical nanostructures, specifically the resonant waveguide grating (RWG) and nano-ribbon cavity based biodetection are promising in this context. The main element of this dissertation is design, fabrication and characterization of RWG sensors for different spectral regions (e.g. visible, near infrared) for use in label-free optical biosensing and also to explore different RWG parameters to maximize sensitivity and increase detection accuracy. Design and fabrication of the waveguide embedded resonant nano-cavity are also studied. Multi-parametric analyses were done using customized optical simulator to understand the operational principle of these sensors and more important the relationship between the physical design parameters and sensor sensitivities. Silicon nitride (SixNy) is a useful waveguide material because of its wide transparency across the whole infrared, visible and part of UV spectrum, and comparatively higher refractive index than glass substrate. SixNy based RWGs on glass substrate are designed and fabricated applying both electron beam lithography and low cost nano-imprint lithography techniques. A Chromium hard mask aided nano-fabrication technique is developed for making very high aspect ratio optical nano-structure on glass substrate. An aspect ratio of 10 for very narrow (~60 nm wide) grating lines is achieved which is the highest presented so far. The fabricated RWG sensors are characterized for both bulk (183.3 nm/RIU) and surface sensitivity (0.21nm/nm-layer), and then used for successful detection of Immunoglobulin-G (IgG) antibodies and antigen (~1μg/ml) both in buffer and serum. Widely used optical biosensors like surface plasmon resonance and optical microcavities are limited in the separation of bulk response from the surface binding events which is crucial for ultralow biosensing application with thermal or other perturbations. A RWG based dual resonance approach is proposed and verified by controlled experiments for separating the response of bulk and surface sensitivity. The dual resonance approach gives sensitivity ratio of 9.4 whereas the competitive polarization based approach can offer only 2.5. The improved performance of the dual resonance approach would help reducing probability of false reading in precise bio-assay experiments where thermal variations are probable like portable diagnostics.
Resumo:
This thesis involved the development of two Biosensors and their associated assays for the detection of diseases, namely IBR and BVD for veterinary use and C1q protein as a biomarker to pancreatic cancer for medical application, using Surface Plasmon Resonance (SPR) and nanoplasmonics. SPR techniques have been used by a number of groups, both in research [1-3] and commercially [4, 5] , as a diagnostic tool for the detection of various biomolecules, especially antibodies [6-8]. The biosensor market is an ever expanding field, with new technology and new companies rapidly emerging on the market, for both human [8] and veterinary applications [9, 10]. In Chapter 2, we discuss the development of a simultaneous IBR and BVD virus assay for the detection of antibodies in bovine serum on an SPR-2 platform. Pancreatic cancer is the most lethal cancer by organ site, partially due to the lack of a reliable molecular signature for diagnostic testing. C1q protein has been recently proposed as a biomarker within a panel for the detection of pancreatic cancer. The third chapter discusses the fabrication, assays and characterisation of nanoplasmonic arrays. We will talk about developing C1q scFv antibody assays, clone screening of the antibodies and subsequently moving the assays onto the nanoplasmonic array platform for static assays, as well as a custom hybrid benchtop system as a diagnostic method for the detection of pancreatic cancer. Finally, in chapter 4, we move on to Guided Mode Resonance (GMR) sensors, as a low-cost option for potential use in Point-of Care diagnostics. C1q and BVD assays used in the prior formats are transferred to this platform, to ascertain its usability as a cost effective, reliable sensor for diagnostic testing. We discuss the fabrication, characterisation and assay development, as well as their use in the benchtop hybrid system.
Resumo:
The development of an ultrasensitive biosensor for the low-cost and on-site detection of pathogenic DNA could transform detection capabilities within food safety, environmental monitoring and clinical diagnosis. Herein, we present an innovative approach exploiting endonuclease-controlled aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. The method utilizes RNA-functionalized AuNPs which form DNA-RNA heteroduplex structures through specific hybridization with target DNA. Once formed, the DNA-RNA heteroduplex is susceptible to RNAse H enzymatic cleavage of the RNA probe, allowing the target DNA to liberate and hybridize with another RNA probe. This continuously happens until all of the RNA probes are cleaved, leaving the nanoparticles unprotected and thus aggregated upon exposure to a high electrolytic medium. The assay is ultrasensitive, allowing the detection of target DNA at femtomolar level by simple spectroscopic analysis (40.7 fM and 2.45 fM as measured by UV-vis and dynamic light scattering (DLS), respectively). The target DNA spiked food matrix (chicken meat) is also successfully detected at a concentration of 1.2 pM (by UV-vis) or 18.0 fM (by DLS). In addition to the ultra-high sensitivity, the total analysis time of the assay is less than 3 hours, thus demonstrating its practicality for food analysis.
Resumo:
Rapid, sensitive and selective detection of chemical hazards and biological pathogens has shown growing importance in the fields of homeland security, public safety and personal health. In the past two decades, efforts have been focusing on performing point-of-care chemical and biological detections using miniaturized biosensors. These sensors convert target molecule binding events into measurable electrical signals for quantifying target molecule concentration. However, the low receptor density and the use of complex surface chemistry in receptors immobilization on transducers are common bottlenecks in the current biosensor development, adding to the cost, complexity and time. This dissertation presents the development of selective macromolecular Tobacco mosaic virus-like particle (TMV VLP) biosensing receptor, and the microsystem integration of VLPs in microfabricated electrochemical biosensors for rapid and performance-enhanced chemical and biological sensing. Two constructs of VLPs carrying different receptor peptides targeting at 2,4,6-trinitrotoluene (TNT) explosive or anti-FLAG antibody are successfully bioengineered. The VLP-based TNT electrochemical sensor utilizes unique diffusion modulation method enabled by biological binding between target TNT and receptor VLP. The method avoids the influence from any interfering species and environmental background signals, making it extremely suitable for directly quantifying the TNT level in a sample. It is also a rapid method that does not need any sensor surface functionalization process. For antibody sensing, the VLPs carrying both antibody binding peptides and cysteine residues are assembled onto the gold electrodes of an impedance microsensor. With two-phase immunoassays, the VLP-based impedance sensor is able to quantify antibody concentrations down to 9.1 ng/mL. A capillary microfluidics and impedance sensor integrated microsystem is developed to further accelerate the process of VLP assembly on sensors and improve the sensitivity. Open channel capillary micropumps and stop-valves facilitate localized and evaporation-assisted VLP assembly on sensor electrodes within 6 minutes. The VLP-functionalized impedance sensor is capable of label-free sensing of antibodies with the detection limit of 8.8 ng/mL within 5 minutes after sensor functionalization, demonstrating great potential of VLP-based sensors for rapid and on-demand chemical and biological sensing.
Resumo:
Surface Plasmon Resonance (SPR) and localized surface plasmon resonance (LSPR) biosensors have brought a revolutionary change to in vitro study of biological and biochemical processes due to its ability to measure extremely small changes in surface refractive index (RI), binding equilibrium and kinetics. Strategies based on LSPR have been employed to enhance the sensitivity for a variety of applications, such as diagnosis of diseases, environmental analysis, food safety, and chemical threat detection. In LSPR spectroscopy, absorption and scattering of light are greatly enhanced at frequencies that excite the LSPR, resulting in a characteristic extinction spectrum that depends on the RI of the surrounding medium. Compositional and conformational change within the surrounding medium near the sensing surface could therefore be detected as shifts in the extinction spectrum. This dissertation specifically focuses on the development and evaluation of highly sensitive LSPR biosensors for in situ study of biomolecular binding process by incorporating nanotechnology. Compared to traditional methods for biomolecular binding studies, LSPR-based biosensors offer real-time, label free detection. First, we modified the gold sensing surface of LSPR-based biosensors using nanomaterials such as gold nanoparticles (AuNPs) and polymer to enhance surface absorption and sensitivity. The performance of this type of biosensors was evaluated on the application of small heavy metal molecule binding affinity study. This biosensor exhibited ~7 fold sensitivity enhancement and binding kinetics measurement capability comparing to traditional biosensors. Second, a miniaturized cell culture system was integrated into the LSPR-based biosensor system for the purpose of real-time biomarker signaling pathway studies and drug efficacy studies with living cells. To the best of our knowledge, this is the first LSPR-based sensing platform with the capability of living cell studies. We demonstrated the living cell measurement ability by studying the VEGF signaling pathway in living SKOV-3 cells. Results have shown that the VEGF secretion level from SKOV-3 cells is 0.0137 ± 0.0012 pg per cell. Moreover, we have demonstrated bevacizumab drug regulation to the VEGF signaling pathway using this biosensor. This sensing platform could potentially help studying biomolecular binding kinetics which elucidates the underlying mechanisms of biotransportation and drug delivery.