995 resultados para LUNG-TRANSPLANTATION
Resumo:
Posttraumatic adult respiratory distress syndrome (ARDS) still involves significant mortality, despite progress in management concepts. Current therapeutic strategies are briefly described, including kinetic therapy, high-frequency jet ventilation and extracorporeal membrane oxygenation. In addition, a spectacular case of the first successful lung transplantation for posttraumatic ARDS after failed ECMO (extracorporeal membrane oxygenation) support is reported. This young man with severe posttraumatic ARDS developed a potentially lethal bilateral pulmonary hemorrhage under treatment with ECMO, and on the basis of this bilateral pulmonary transplantation was considered to be indicated. The patient is alive and well 2 years after the procedure.
Resumo:
In some patients with acute respiratory failure, the native lungs do not recover during extracorporeal membrane oxygenation (ECMO), or complications occur that preclude the meaningful continuation of ECMO therapy. In such cases, emergency lung transplantation (LTx) represents the only therapeutic alternative. Between May 1988 and April 1993, the authors have performed LTx after ECMO support in five of 111 lung or heart-lung transplantations (4.5%). Two patients presented with early graft failure after unilateral LTx. In these patients, ECMO was used as a bridging device to unilateral re-LTx for 1, resp. 11 days. One patient died 6 months post-operatively from chronic rejection; the other underwent a third LTx and is doing well after 42 months. In three further patients already treated with ECMO for 5 to 12 days for ARDS (n = 2) or acute respiratory failure after liver and kidney transplantation, the native lungs did not recover (n = 2) or pulmonary hemorrhage developed. The last patient (unilateral LTx) and one of the former (bilateral LTx for ARDS) are long-term survivors (12, 30 months). The remaining patient (unilateral LTx for ARDS) had severe multiorgan failure at the time of his operation and died intraoperatively. The authors conclude that ECMO no longer represents a contraindication to subsequent LTx. Their results also support the continued investigation of this combined therapeutic approach.
Resumo:
Regular preoperative application of corticosteroids has been considered as a contraindication to lung transplantation for fear of an increased risk of postoperative morbidity and mortality. Recently, however, we have accepted patients for transplantation in whom treatment with steroid medication could not be terminated preoperatively. Up to February 1991, 27 unilateral and bilateral transplantations in 26 patients were analyzed. Corticosteroid therapy was discontinued at least three months prior to transplantation in 13 patients (group 1), whereas in 14 cases, the patients continued their daily corticosteroid therapy to the time of transplantation (prednisolone, 0.1 to 0.3 mg/kg/day; group 2). There were no significant differences between the groups with respect to sex, age, diagnosis, or type of transplantation. One limited bronchial dehiscence occurred; the incidence of postoperative bronchial stenosis was identical in both cohorts; one patient died in each group. In conclusion, no increased morbidity or mortality could be found following lung transplantation with regular preoperative administration of prednisolone up to 0.3 mg/kg/day. Thus, patients who cannot be weaned from their steroid medication but who otherwise are acceptable candidates should not be excluded from lung transplantation.
Resumo:
A severe adult respiratory distress syndrome after bilateral lung contusion was successfully treated by extracorporeal membrane oxygenation and subsequent double-lung transplantation in a 19-year-old man. The patient is fully rehabilitated 1 year after transplantation.
Resumo:
The occurrence of severe graft failure after lung transplantation which appears refractory to conventional treatment represents a difficult situation with regard to the therapeutic strategies available. Of 17 patients undergoing single lung transplantation at our center, 2 developed early graft failure. In both, temporary artificial cardiopulmonary support by means of extracorporeal membrane oxygenation became necessary as a bridge to retransplantation. Both patients were successfully retransplanted after 8 h and 232 h, respectively, of extra-corporeal support. Postoperatively, there was a variety of complications. The first patient completely recovered from temporary severe cerebral dysfunction diagnosed as "locked-in syndrome". She was discharged from hospital on the 93rd postoperative day and remains alive and well 10 months after her operation. The other patient recovered well early after retransplantation. Later, however, airway problems developed, requiring the implantation of endotracheal stents. Cachexia and several episodes of viral pneumonia contributed to the progressive deterioration of her clinical status. She finally died after being hospitalized for 5 months after the original operation. These two cases illustrate the feasibility of using extracorporeal membrane oxygenation as a bridge to pulmonary transplantation.
Resumo:
Direct revascularization of a bronchial artery has been proposed as a measure to alleviate the problem of bronchial ischemia after lung transplantation. To assess the effect of restoration of arterial blood flow to the transplanted bronchus, bronchial mucosal blood flow was measured in a model of modified unilateral lung transplantation in pigs. Laser Doppler velocimetry (LDV) and radioisotope studies using radio-labeled erythrocytes (RI) were used to measure blood flow at the donor main carina (DC) and upper lobe carina (DUC) after 3 h of reperfusion. The recipient carina was used as a reference point; values obtained by LDV and RI were expressed as percentage of blood flow at the recipient carina. Two groups of animals were studied. In group 1 (n = 6) standard unilateral transplantation was performed; in group 2 (n = 6) a left bronchial artery was reimplanted into the descending thoracic aorta of the recipient. No differences were observed between the two groups with respect to preoperative or postoperative gas exchange or hemodynamics. In group 1, bronchial blood flow at the DC was 37.6 +/- 2.2% (LDV) and 44.1 +/- 14.8% (RI) of reference blood flow. At the DUC, blood flow was 54.9 +/- 7.7% (LDV) and 61.6 +/- 25.7% (RI) of normal flow. In group 2, blood flow was increased at the DC as measured by LDV (55.3 +/- 17.1%; p less than 0.05) and by RI (60.8 +/- 25.3%; p less than 0.2). A similar increase was found at the DUC (LDV: 81.8 +/- 19.3%; p less than 0.05; RI: 88.6 +/- 31.0%; p less than 0.2). It is concluded that there is a significant gradient of blood flow from intra- to extrapulmonary airways after lung transplantation. Reimplantation of a bronchial artery results in significant improvement of graft bronchial blood flow. Restoration of bronchial perfusion to normal levels, however, cannot be achieved, suggesting a possible defect in the microcirculation of the donor airways.
Resumo:
We applied predicted vital capacity to chest size matching between donor and recipient in lung transplantation to 15 single-lung transplant recipients with pulmonary fibrosis and to 20 double-lung transplant recipients with emphysema or non-emphysema. The predicted vital capacity of the donor was significantly correlated with the predicted vital capacity of the recipient both in double-lung transplantation (r = 0.79, p = 0.001) and single-lung transplantation (r = 0.71, p = 0.003). In double-lung transplantation, the post-transplant vital capacity was correlated with the predicted vital capacity of the recipient (r = 0.74, p = 0.002). Emphysema patients and non-emphysema patients contributed equally to this correlation. In left single lung transplantation, there was a weak correlation between the post-transplant vital capacity and the predicted vital capacity of the donor in the allograft (r = 0.57, p = 0.1095). In right single lung transplantation, the post-transplant vital capacity of the allograft tended to be correlated with the predicted vital capacity of recipient (r = 0.77, p = 0.0735). We concluded that donors were actually selected based on the comparison of predicted vital capacity between donor and recipient. In double-lung transplantation, the post-transplant vital capacity was limited by the recipient's normal thoracic volume and was not influenced by underlying pulmonary disease. In single-lung transplantation with pulmonary fibrosis, the allograft transplanted in the left chest could expand to its own size, and the allograft transplanted in the right chest could expand to the recipient's normal thoracic volume as in double-lung transplantation.
Resumo:
BACKGROUND: The question whether patients suffering from end-stage emphysema who are candidates for lung transplantation should be treated with a single lung or with a double lung transplantation is still unanswered. METHODS: We reviewed 24 consecutive lung transplant procedures, comparing the results of 6 patients with an unilateral and 17 with a bilateral transplantation. PATIENTS AND RESULTS: After bilateral transplantation the patients showed a trend towards better blood gas exchange with shorter time on ventilator and intensive care compared patients after unilateral procedure. Three-year-actuarial survival was higher in the group after bilateral transplantation (83% versus 67%). There was a continuous improvement in pulmonary function in both groups during the first months after transplantation. Vital capacity and forced exspiratory ventilation therapies during the first second were significantly higher in the bilateral transplant group. CONCLUSION: Both unilateral and bilateral transplantation are feasible for patients with end-stage emphysema. Bilateral transplantation results in better pulmonary reserve capacity and faster rehabilitation.
Resumo:
The use of non-heart-beating donor (NHBD) lungs may help to overcome the shortage of lung grafts in clinical lung transplantation, but warm ischaemia and ischaemia/reperfusion injury (I/R injury) resulting in primary graft dysfunction represent a considerable threat. Thus, better strategies for optimized preservation of lung grafts are urgently needed. Surfactant dysfunction has been shown to contribute to I/R injury, and surfactant replacement therapy is effective in enhancing lung function and structural integrity in related rat models. In the present study we hypothesize that surfactant replacement therapy reduces oedema formation in a pig model of NHBD lung transplantation. Oedema formation was quantified with (SF) and without (non-SF) surfactant replacement therapy in interstitial and alveolar compartments by means of design-based stereology in NHBD lungs 7 h after cardiac arrest, reperfusion and transplantation. A sham-operated group served as control. In both NHBD groups, nearly all animals died within the first hours after transplantation due to right heart failure. Both SF and non-SF developed an interstitial oedema of similar degree, as shown by an increase in septal wall volume and arithmetic mean thickness as well as an increase in the volume of peribron-chovascular connective tissue. Regarding intra-alveolar oedema, no statistically significant difference could be found between SF and non-SF. In conclusion, surfactant replacement therapy cannot prevent poor outcome after prolonged warm ischaemia of 7 h in this model. While the beneficial effects of surfactant replacement therapy have been observed in several experimental and clinical studies related to heart-beating donor lungs and cold ischaemia, it is unlikely that surfactant replacement therapy will overcome the shortage of organs in the context of prolonged warm ischaemia, for example, 7 h. Moreover, our data demonstrate that right heart function and dysfunctions of the pulmonary vascular bed are limiting factors that need to be addressed in NHBD.
Resumo:
BACKGROUND: Risk factors and outcomes of bronchial stricture after lung transplantation are not well defined. An association between acute rejection and development of stricture has been suggested in small case series. We evaluated this relationship using a large national registry. METHODS: All lung transplantations between April 1994 and December 2008 per the United Network for Organ Sharing (UNOS) database were analyzed. Generalized linear models were used to determine the association between early rejection and development of stricture after adjusting for potential confounders. The association of stricture with postoperative lung function and overall survival was also evaluated. RESULTS: Nine thousand three hundred thirty-five patients were included for analysis. The incidence of stricture was 11.5% (1,077/9,335), with no significant change in incidence during the study period (P=0.13). Early rejection was associated with a significantly greater incidence of stricture (adjusted odds ratio [AOR], 1.40; 95% confidence interval [CI], 1.22-1.61; p<0.0001). Male sex, restrictive lung disease, and pretransplantation requirement for hospitalization were also associated with stricture. Those who experienced stricture had a lower postoperative peak percent predicted forced expiratory volume at 1 second (FEV1) (median 74% versus 86% for bilateral transplants only; p<0.0001), shorter unadjusted survival (median 6.09 versus 6.82 years; p<0.001) and increased risk of death after adjusting for potential confounders (adjusted hazard ratio 1.13; 95% CI, 1.03-1.23; p=0.007). CONCLUSIONS: Early rejection is associated with an increased incidence of stricture. Recipients with stricture demonstrate worse postoperative lung function and survival. Prospective studies may be warranted to further assess causality and the potential for coordinated rejection and stricture surveillance strategies to improve postoperative outcomes.
Resumo:
RATIONALE The use of 6-minute-walk distance (6MWD) as an indicator of exercise capacity to predict postoperative survival in lung transplantation has not previously been well studied. OBJECTIVES To evaluate the association between 6MWD and postoperative survival following lung transplantation. METHODS Adult, first time, lung-only transplantations per the United Network for Organ Sharing database from May 2005 to December 2011 were analyzed. Kaplan-Meier methods and Cox proportional hazards modeling were used to determine the association between preoperative 6MWD and post-transplant survival after adjusting for potential confounders. A receiver operating characteristic curve was used to determine the 6MWD value that provided maximal separation in 1-year mortality. A subanalysis was performed to assess the association between 6MWD and post-transplant survival by disease category. MEASUREMENTS AND MAIN RESULTS A total of 9,526 patients were included for analysis. The median 6MWD was 787 ft (25th-75th percentiles = 450-1,082 ft). Increasing 6MWD was associated with significantly lower overall hazard of death (P < 0.001). Continuous increase in walk distance through 1,200-1,400 ft conferred an incremental survival advantage. Although 6MWD strongly correlated with survival, the impact of a single dichotomous value to predict outcomes was limited. All disease categories demonstrated significantly longer survival with increasing 6MWD (P ≤ 0.009) except pulmonary vascular disease (P = 0.74); however, the low volume in this category (n = 312; 3.3%) may limit the ability to detect an association. CONCLUSIONS 6MWD is significantly associated with post-transplant survival and is best incorporated into transplant evaluations on a continuous basis given limited ability of a single, dichotomous value to predict outcomes.