906 resultados para LOWER CRUST
Resumo:
New U-Th-Ra, major and trace element, and Sr-Nd-Pb isotope data are presented for young lavas from the New Britain and Western Bismarck arcs in Papua New Guinea. New Britain is an oceanic arc, whereas the latter is the site of an arc-continent collision. Building on a recent study of the Manus Basin, contrasts between the two arcs are used to evaluate the processes and timescales of magma generation accompanying arc-continent collision and possible slab detachment. All three suites share many attributes characteristic of arc lavas that can be ascribed to the addition of a regionally uniform subduction component derived from the subducting altered oceanic crust and sediment followed by dynamic melting of the modified mantle. However, the Western Bismarck arc lavas diverge from the Pb isotope mixing array formed by the New Britain and the Manus Basin lavas toward elevated Pb-208/Pb-204. We interpret this to reflect a second and subsequent addition of sediment melt at crustal depth during collision. U-238 and Ra-226 excesses are preserved in all of the lavas and are greatest in the Western Bismarck arc. High-Mg andesites with high Sr/Y ratios in the westernmost arc are attributed to recent shallow mantle flux melting at the slab edge. Data for two historical rhyolites are also presented. Although these rhyolites formed in quite different tectonic settings and display different geochemical and isotopic compositions, both formed from mafic parents within millennia.
Resumo:
330 km 2 of the easter-n part of the Archean Manitou Lakes - Stormy Lake metavolcanic - metasedimentary belt have been mapped and sampled. A large number of rocks ~.vere analyzed for the major and trace constituents including the rare-earth elements (REE). The Stormy Lake - Kawashegamuk Lake area may be subdivided into four major lithological groups of supracrustal rocks 1) A north-facing mafic assemblage, consisting of pillowed tholeiitic basalts and gabbro sills characterized by flat REE profiles, is exposed in the south part of the map area and belongs to a 8000 m thick homoclinal assemblage outside the map area. Felsic pyroclastic rocks believed to have been issued from a large central vent conformably overlie the tholeiites. 2) A dominantly epiclastic group facing to the north consists of terrestrial deposits interpreted to be an alluvial fan deposit ; a submarine facies is represented by turbiditic sediments. 3) The northeastern part of the study area consists of volcanic rocks belonging to two mafic - felsic cycles facing to the southuest ; andesitic flows with fractionated REE patterns make up a large part of the upper cycle, whereas the lower cycle has a stronger chemical polarity being represented by tholeiitic flows, with flat REE, which a r e succeeded by dacitic and rhyolitic pyroclasti cs. iii 4) A thick monotonous succession of tholeiitic pillmled basalt f lows and gabbro sills with flat REE represent the youngest supracrustal rocks. TIle entire belt underwent folding, faulting and granitic plutonism during a tectono-thermal event around 2700 Ma ago. Rocks exposed in the map area were subjected to regional greenschist facies metamorphism, but higher metamorphic grades are present near late granitic intrusions. Geochemical studies have been useful in 1) distinguishing the various rock units ; 2) relating volcanic and intrusive rocks 3) studying the significance of chemical changes due to post magmatic processes 4) determining the petrogenesis of the major volcanic rock types. In doing so, two major volcanic suites have been recognized : a) a tholeiitic suite, mostly represented by mafic rocks, was derived from partial melting of upper mantle material depleted in Ti, K and the light REE ; b) a calc-alkalic suite which evolved from partial melting of amphibolite in the lower crust. The more differentiated magma types have been produced by a multistage process involving partial melting and fractional crystallization to yield a continuum of compos i t i ons ranging from basaltic andesite to rhyolite. A model for the development of the eastern part of the Manitou Lakes - Stormy Lake belt has been proposed.
Resumo:
In the south Sao Francisco craton a circular and 8-m amplitude geoid anomaly coincides with the outcropping terrain of an Archean-Paleoproterozoic basement. Broadband magnetotelluric (MT) data inversions of two radial profiles within the positive geoid and Bouguer gravity anomaly yield geo-electrical crustal sections, whereby the lower crust is locally more conductive (10 to 100 Omega m) in spatial coincidence with a denser lower crust modeled by the gravity data. This anomalous lower crust may have resulted from magmatic underplating, associated with Mesoarchean and Proterozoic episodes of tholeiitic dike intrusion. Long-period MT soundings reveal a low electrical resistivity mantle (20 to 200 Omega m) from depths beyond 120 km. Forward geoid modeling, using the scope of the low electrical resistivity region within the mantle as a constraint, entails a density increase (40 to 50 kg/m(3)) possibly due to Fe enrichment of mantle minerals. However, this factor alone does not explain the observed resistivity. A supplemented presence of small amounts of percolated carbonatite melting (similar to 0.005 vol.%), dissolved water and enhanced oxygen fugacity within the peridotitic mantle are viable agents that could explain the less resistive upper mantle. We propose that metasomatic processes confined in the sub-continental lithospheric mantle foster the conditions for a low degree melting with variable CO(2), H(2)O and Fe content. Even though the precise age of this metasomatism is unknown it might be older than the Early Cretaceous based on the evidence that a high-degree of melting in a lithospheric mantle impregnated with carbonatites originated the tholeiitic dike intrusions dispersed from the southeastern border of the Sao Francisco craton, during the onset of the lithosphere extension and break-up of the western Gondwana. The proxies are the NE Parana and Espinhaco (130 Ma, Ar/Ar ages) tholeiitic dikes, which contain (similar to 3%) carbonatites in their composition. The occurrence of a positive geoid anomaly (+ 10 m) and pre-tholeiites (age > 138 Ma), carbonatites and kimberlites along the west African continental margin (Angola and Namibia) reinforces the presumed age of the Sao Francisco-Congo craton rejuvenation to be prior to its fragmentation in the Lower Cretaceous. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The deep crustal structure of the Parana Basin of southern Brazil is investigated by analyzing P- and PP-wave receiver functions at 17 Brazilian Lithosphere Seismic Project stations within the basin. The study area can be described as a typical Paleozoic intracratonic basin that hosts one of the largest Large Igneous Province of the world and makes a unique setting for investigating models of basin subsidence and their interaction with mantle plumes. Our study consists of (1) an analysis of the Moho interaction phases in the receiver functions to obtain the thickness and bulk Vp/Vs ratio of the basin`s underlying crust and (2) a joint inversion with Rayleigh-wave dispersion velocities from an independent tomographic study to delineate the detailed S-wave velocity variation with depth. The results of our analysis reveal that Moho depths and bulk Vp/Vs ratios (including sediments) vary between 41 and 48 km and between 1.70 and 1.76, respectively, with the largest values roughly coinciding with the basin`s axis, and that S-wave velocities in the lower crust are generally below 3.8 km/s. Select sites within the basin, however, show lower crustal S-wave velocities slightly above 3.9 km/s suggestive of underplated mafic material. We show that these observations are consistent with a fragmented cratonic root under the Parana basin that defined a zone of weakness for the initial Paleozoic subsidence of the basin and which allowed localized mafic underplating of the crust along the suture zones by Cenozoic magmatism.
Genetic algorithm inversion of the average 1D crustal structure using local and regional earthquakes
Resumo:
Knowing the best 1D model of the crustal and upper mantle structure is useful not only for routine hypocenter determination, but also for linearized joint inversions of hypocenters and 3D crustal structure, where a good choice of the initial model can be very important. Here, we tested the combination of a simple GA inversion with the widely used HYPO71 program to find the best three-layer model (upper crust, lower crust, and upper mantle) by minimizing the overall P- and S-arrival residuals, using local and regional earthquakes in two areas of the Brazilian shield. Results from the Tocantins Province (Central Brazil) and the southern border of the Sao Francisco craton (SE Brazil) indicated an average crustal thickness of 38 and 43 km, respectively, consistent with previous estimates from receiver functions and seismic refraction lines. The GA + HYPO71 inversion produced correct Vp/Vs ratios (1.73 and 1.71, respectively), as expected from Wadati diagrams. Tests with synthetic data showed that the method is robust for the crustal thickness, Pn velocity, and Vp/Vs ratio when using events with distance up to about 400 km, despite the small number of events available (7 and 22, respectively). The velocities of the upper and lower crusts, however, are less well constrained. Interestingly, in the Tocantins Province, the GA + HYPO71 inversion showed a secondary solution (local minimum) for the average crustal thickness, besides the global minimum solution, which was caused by the existence of two distinct domains in the Central Brazil with very different crustal thicknesses. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The studied sector of the central Ribeira Fold Belt (SE Brazil) comprises metatexites, diatexites, charnockites and blastomylonites. This study integrates petrological and thermochronological data in order to constrain the thermotectonic and geodynamic evolution of this Neoproterozoic-Ordovician mobile belt during Western Gondwana amalgamation. New data indicate that after an earlier collision stage at similar to 610 Ma (zircon, U-Pb age), peak metamorphism and lower crust partial melting, coeval with the main regional high grade D(1) thrust deformation, occurred at 572-562 Ma (zircon, U-Pb ages). The overall average cooling rate was low (<5 degrees C/Ma) from 750 to 250 degrees C (at similar to 455 Ma; biotite-WR Rb-Sr age), but disparate cooling paths indicate differential uplift between distinct lithotypes: (a) metatexites and blastomylonites show a overall stable 3-5 degrees C/Ma cooling rate; (b) charnockites and associated rocks remained at T>650 degrees C during sub-horizontal D(2) shearing until similar to 510-470 Ma (garnet-WR Sm-Nd ages) (1-2 degrees C/Ma), being then rapidly exhumed/cooled (8-30 degrees C/Ma) during post-orogenic D(3) deformation with late granite emplacement at similar to 490 Ma (zircon, U-Pb age). Cooling rates based on garnet-biotite Fe-Mg diffusion are broadly consistent with the geochronological cooling rates: (a) metatexites were cooled faster at high temperatures (6 degrees C/Ma) and slowly at low temperatures (0.1 degrees C/Ma), decreasing cooling rates with time; (b) charnockites show low cooling rates (2 degrees C/Ma) near metamorphic peak conditions and high cooling rates (120 degrees C/Ma) at lower temperatures, increasing cooling rates during retrogression. The charnockite thermal evolution and the extensive production of granitoid melts in the area imply that high geothermal gradients were sustained fora long period of time (50-90 Ma). This thermal anomaly most likely reflects upwelling of asthenospheric mantle and magma underplating coupled with long-term generation of high HPE (heat producing elements) granitoids. These factors must have sustained elevated crustal geotherms for similar to 100 Ma, promoting widespread charnockite generation at middle to lower crustal levels. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Early Cretaceous (similar to 129 Ma) silicic rocks crop out in SE Uruguay between the Laguna Merin and Santa Lucia basins in the Lascano, Sierra Sao Miguel. Salamanca and Minas areas They are mostly rhyolites with minor quartz-trachytes and are nearly contemporaneous with the Parana-Etendeka igneous province and with the first stages of South Atlantic Ocean opening A strong geochemical variability (particularly evident from Rb/Nb, Nb/Y trace element ratios) and a wide range of Sr-Nd isotopic ratios ((143)Nd/(144)Nd((129)) = 0.51178-0.51209, (87)Sr/(86)Sr((129)) = 0.70840-0.72417) characterize these rocks Geochemistry allows to distiniguish two compositional groups, corresponding to the north-eastern (Lascano and Sierra Sao Miguel, emplaced on the Neo-Proterozoic southern sector of the Dom Feliciano mobile belt) and south-eastern localities (Salamanca, Minas, emplace on the much older (Archean) Nico Perez teriane or on the boundary between the Dom Feliciano and Nico Perez termites) These compositional differences between the two groups are explained by variable mantle source and crust contributions. The origin of the silicic magmas is best explained by complex processes involving assimilation and fractional crystallization and mixing of a basaltic magma with upper crustal lithologies, for Lascano and Sierra Sao Miguel rhyolites. In the Salamanea and Minas rocks genesis, a stronger contribution from lower crust is indicated.
Resumo:
Pseudosections, geothermobarometric estimates and careful petrographic observations of gneissic migmatites and granulites from Neoproterozoic central Ribeira Fold Belt (SE Brazil) were performed in order to quantify the metamorphic P-T conditions during prograde and retrograde evolution of the Brasiliano Orogeny. Results establish a prograde metamorphic trajectory from amphibolite facies conditions to metamorphic peak (T = 850 +/- 50 A degrees C; P = 8 +/- 1 kbar) that promoted widespread dehydrationmelting of 30 to 40% of the gneisses and high-grade granitization. After the metamorphic peak, migmatites evolved with cooling and decompression to T a parts per thousand 500 A degrees C and P a parts per thousand 5 kbar coupled with aH2O increase, replacing the high-grade paragenesis plagioclase-quartz-K-feldspar-garnet by quartz-biotite-sillimanite-(muscovite). Cordierite absence, microtextural observations and P-T results constrain the migmatite metamorphic evolution in the pseudosections as a clockwise P-T path with retrograde cooling and decompression. High-temperature conditions further dehydrated the lower crust with biotite and amphibole-dehydration melting and granulite formation coupled with 10% melt generation. Granulites can thus be envisaged as middle to lower crust dehydrated restites. Granulites were slowly (nearly isobarically) cooled, followed by late exhumation/retrograde rapid decompression and cooling, reflecting a two step P-T path. This retrograde evolution, coupled with water influx, chemically reequilibrated the rocks from granulite to amphibolite/greenschist facies, promoting the replacement of the plagioclase-quartz-garnet-hypersthene peak assemblage by quartz-biotite- K-feldspar symplectites.
Resumo:
The 590-580 Ma Itu Granite Province (IGP) is a roughly linear belt of post-orogenic granite plutons similar to 60 km wide extending for some 350 km along the southern edge of the Apia-Guaxupe Terrane in southeastern Brazil. Typical components are subalkaline A-type granites (some with rapakivi texture) that crystallized at varied, but mostly strongly oxidizing conditions, and contrast with a coeval association of also oxidized high-K calc-alkaline granites in terms of major (e. g., lower Ca/Fe) and trace elements (higher Nb, Y, Zr). Mantle-derived magmas (such as those forming the LILE-rich Piracaia Monzodiorite, with epsilon(Nd(t)) = -7 to -10, (87)Sr/(86)Sr((t)) = 0.7045-0.7055) are inferred to derive from enriched subcontinental lithosphere modified during previous subduction, and may have played a role in the generation of the A-type granites, adding melts or fluids or both to the lower crust from which the latter were generated. The IGP is interpreted as a reflection of crust uplift and increased heat flux during ascent of hot, less dense asthenosphere after continental collision, probably reflecting breakoff of an oceanic slab coeval to the right-lateral accretion of a terrane related to the Mantiqueira Orogenic System.
Resumo:
The Borborema Province (BP) is a geologic domain located in Northeastern Brazil. The BP is limited at the south by the São Francisco craton, at the west by the Parnaíba basin, and both at the north and east by coastal sedimentary basins. Nonetheless the BP surface geology is well known, several key aspects of its evolution are still open, notably: i)its tectonic compartmentalization established after the Brasiliano orogenesis, ii) the architecture of its cretaceous continental margin, iii) the elastic properties of its lithosphere, and iv) the causes of magmatism and uplifting which occurred in the Cenozoic. In this thesis, a regional coverage of geophysical data (elevation, gravity, magnetic, geoid height, and surface wave global tomography) were integrated with surface geologic information aiming to attain a better understanding of the above questions. In the Riacho do Pontal belt and in the western sector of the Sergipano belt, the neoproterozoic suture of the collision of the Sul domain of the BP with the Sanfranciscana plate (SFP) is correlated with an expressive dipolar gravity anomaly. The positive lobule of this anomaly is due to the BP lower continental crust uplifting whilst the negative lobule is due to the supracrustal nappes overthrusting the SFP. In the eastern sector of the Sergipano belt, this dipolar gravity anomaly does not exist. However the suture still can be identified at the southern sector of the Marancó complex arc, alongside of the Porto da Folha shear zone, where the SFP N-S geophysical alignments are truncated. The boundary associated to the collision of the Ceará domain of the BP with the West African craton is also correlated with a dipolar gravity anomaly. The positive lobule of this anomaly coincides with the Sobral-Pedro II shear zone whilst the negative lobule is associated with the Santa Quitéria magmatic arc. Judging by their geophysical signatures, the major BP internal boundaries are: i)the western sector of the Pernambuco shear zone and the eastern continuation of this shear zone as the Congo shear zone, ii) the Patos shear zone, and iii) the Jaguaribe shear zone and its southwestern continuation as the Tatajuba shear zone. These boundaries divide the BP in five tectonic domains in the geophysical criteria: Sul, Transversal, Rio Grande do Norte, Ceará, and Médio Coreaú. The Sul domain is characterized by geophysical signatures associated with the BP and SFP collision. The fact that Congo shear zone is now proposed as part of the Transversal domain boundary implies an important change in the original definition of this domain. The Rio Grande do Norte domain presents a highly magnetized crust resulted from the superposition of precambrian and phanerozoic events. The Ceará domain is divided by the Senador Pompeu shear zone in two subdomains: the eastern one corresponds to the Orós-Jaguaribe belt and the western one to the Ceará-Central subdomain. The latter subdomain exhibits a positive ENE-W SW gravity anomaly which was associated to a crustal discontinuity. This discontinuity would have acted as a rampart against to the N-S Brasiliano orogenic nappes. The Médio Coreaú domain also presents a dipolar gravity anomaly. Its positive lobule is due to granulitic rocks whereas the negative one is caused by supracrustal rocks. The boundary between Médio Coreaú and Ceará domains can be traced below the Parnaíba basin sediments by its geophysical signature. The joint analysis of free air anomalies, free air admittances, and effective elastic thickness estimates (Te) revealed that the Brazilian East and Equatorial continental margins have quite different elastic properties. In the first one 10 km < Te < 20 km whereas in the second one Te ≤ 10 km. The weakness of the Equatorial margin lithosphere was caused by the cenozoic magmatism. The BP continental margin presents segmentations; some of them have inheritance from precambrian structures and domains. The segmentations conform markedly with some sedimentary basin features which are below described from south to north. The limit between Sergipe and Alagoas subbasins coincides with the suture between BP and SFP. Te estimates indicates concordantly that in Sergipe subbasin Te is around 20 km while Alagoas subbasin has Te around 10 km, thus revealing that the lithosphere in the Sergipe subbasin has a greater rigidity than the lithosphere in the Alagoas subbasin. Additionally inside the crust beneath Sergipe subbasin occurs a very dense body (underplating or crustal heritage?) which is not present in the crust beneath Alagoas subbasin. The continental margin of the Pernambuco basin (15 < Te < 25 km) presents a very distinct free air edge effect displaying two anomalies. This fact indicates the existence in the Pernambuco plateau of a relatively thick crust. In the Paraíba basin the free air edge effect is quite uniform, Te ≈ 15 km, and the lower crust is abnormally dense probably due to its alteration by a magmatic underplating in the Cenozoic. The Potiguar basin segmentation in three parts was corroborated by the Te estimates: in the Potiguar rift Te ≅ 5 km, in the Aracati platform Te ≅ 25 km, and in the Touros platform Te ≅ 10 km. The observed weakness of the lithosphere in the Potiguar rift segment is due to the high heat flux while the relatively high strength of the lithosphere in the Touros platform may be due to the existence of an archaean crust. The Ceará basin, in the region of Mundaú and Icaraí subbasins, presents a quite uniform free air edge effect and Te ranges from 10 to 15 km. The analysis of the Bouguer admittance revealed that isostasy in BP can be explained with an isostatic model where combined surface and buried loadings are present. The estimated ratio of the buried loading relative to the surface loading is equal to 15. In addition, the lower crust in BP is abnormally dense. These affirmations are particularly adequate to the northern portion of BP where adherence of the observed data to the isostatic model is quite good. Using the same above described isostatic model to calculate the coherence function, it was obtained that a single Te estimate for the entire BP must be lower than 60 km; in addition, the BP north portion has Te around 20 km. Using the conventional elastic flexural model to isostasy, an inversion of crust thickness was performed. It was identified two regions in BP where the crust is thickened: one below the Borborema plateau (associated to an uplifting in the Cenozoic) and the other one in the Ceará domain beneath the Santa Quitéria magmatic arc (a residue associated to the Brasiliano orogenesis). On the other hand, along the Cariri-Potiguar trend, the crust is thinned due to an aborted rifting in the Cretaceous. Based on the interpretation of free air anomalies, it was inferred the existence of a large magmatism in the oceanic crust surrounding the BP, in contrast with the incipient magmatism in the continent as shown by surface geology. In BP a quite important positive geoid anomaly exists. This anomaly is spatially correlated with the Borborema plateau and the Macaú-Queimadas volcanic lineament. The integrated interpretation of geoid height anomaly data, global shear velocity model, and geologic data allow to propose that and Edge Driven Convection (EDC) may have caused the Cenozoic magmatism. The EDC is an instability that presumably occurs at the boundary between thick stable lithosphere and oceanic thin lithosphere. In the BP lithosphere, the EDC mechanism would have dragged the cold lithospheric mantle into the hot asthenospheric mantle thus causing a positive density contrast that would have generated the main component of the geoid height anomaly. In addition, the compatibility of the gravity data with the isostatic model, where combined surface and buried loadings are present, together with the temporal correlation between the Cenozoic magmatism and the Borborema plateau uplifting allow to propose that this uplifting would have been caused by the buoyancy effect of a crustal root generated by a magmatic underplating in the Cenozoic
Resumo:
Crustal thickness and VP/VS estimates are essential to the studies of subsurface geological structures and also to the understanding of the regional tectonic evolution of a given area. In this dissertation, we use the Langston´s (1979) Receiver Function Method using teleseismic events reaching the seismographic station with angles close to the vertical. In this method, the information of the geologic structures close to the station is isolated so that effects related to the instrument response and source mechanics are not present. The resulting time series obtained after the deconvolution between horizontal components contains the larger amplitude referring to the P arrival, followed by smaller arrival caused by the reverberation and conversion of the P-wave at the base of the crust. We also used the HK-Stacking after Zhu & Kanamori (2000) to obtain crustal thickness and Vp/VS estimates. This method works stacking receiver functions so that the best estimates of crustal thickness and Vp/VS are found when the direct P, the Ps wave and the first multiple are coherently stacked. We used five broadband seismographic stations distributed over the Borborema Province, NE Brazil. Crustal thickness and Vp/VS estimates are consistent with the crust-mantle interface obtained using gravity data. We also identified crutal thickening in the NW portion of the province, close to Sobral/CE. Towards the center-north portion of the province, there is an evident crustal thinning which coincides with a geological feature consisting of an alignment of sedimentary basins known as the Cariris-Potiguar trend. Towards the NE portion of the province, in Solânea/PB and Agrestina/PE regions, occurs a crustal thickening and a systematic increase in the VP/VS values which suggest the presence of mafic rocks in the lower crust also consistent with the hypothesis of underplating in the region
Resumo:
The Brasiliano Cycle in the Seridó Belt (NE Brazil) is regarded mostly as a crustal reworking event, characterized by transcurrent or transpressional shear zones which operated under high temperature and low pressure conditions. In the eastern domain of this belt- the so-called São José de Campestre Massif (SJCM), a transtensional deformation regime is evidenced by extensional components or structures associated to the strikeslip shear zones. The emplacement of the Neoproterozoic Brasiliano granitoids is strongly controled by these discontinuities. Located in the southern border of the SJCM, the Remígio-Pocinhos shear zone (RPSZ) displays, in its northern half, top to the SW extensional movement which progressively grade, towards its southern half, to a dextral strike-slip kinematics, defining a negative semi-flower structure. This shear zone is overprinted upon allocthonous metasediments of the Seridó Group and an older gneiss-migmatite complex, both of which containing metamorphic parageneses from high amphibolite to granulite facies (the latter restricted to the strike-slip zone), defining the peak conditions of deformation. Several granitoid plutons are found along this structure, emplaced coeval with the shearing event. Individually, such bodies do not exceed 30 km2 in outcropping area and are essentially parallel to the trend of the shear zone. Petrographic, textural and geochemical data allow to recognize five different granitoid suites along the RPSZ: porphyritic granites (Serra da Boa Vista and Jandaíra), alkaline granites (Serra do Algodão and Serra do Boqueirão) and medium to coarse-grained granites (Olivedos) as major plutons, while microgranite and aluminous leucogranite sheets occur as minor intrusions. The porphyritic granites are surrounded by metasediments and present sigmoidal or en cornue shapes parallel to the trend of the RPSZ, corroborating the dextral kinematics. Basic to intermediate igneous enclaves are commonly associated to these bodies, frequently displaying mingling textures with the host granitoids. Compositionally these plutons are made up by titanite-biotite monzogranites bearing amphibole and magnetite; they are peraluminous and show affinities to the monzonitic, subalkaline series. Peraluminous, ilmenite-bearing biotite monzogranites and titanite-biotite monzogranites correspond, respectivally, to the Olivedos pluton and the microgranites. The Olivedos body is hosted by metasediments, while the microgranites intrude the gneiss-migmatite complex. Being highly evolved rocks, samples from these granites plot in the crustal melt fields in discrimination diagrams. Nevertheless, their subtle alignment also looks consistent with a monzonitic, subalkaline affinity. These chemical parameters make them closer to the I-type granites. Alkaline, clearly syntectonic granites are also recognized along the RPSZ. The Serra do Algodão and Serra do Boqueirão bodies display elongated shapes parallel to the mylonite belt which runs between the northern, extensional domain and the southern strike-slip zone. The Serra do Algodão pluton shows a characteristic isoclinal fold shape structure. Compositionally they encompass aegirine-augite alkali-feldspar granites and quartz-bearing alkaline syenite bearing garnet (andradite) and magnetite plus ilmenite as opaque phases. These rocks vary from meta to peraluminous, being correlated to the A-type granites. Aluminous leucogranites bearing biotite + muscovite ± sillimanite ± garnet (S-type granites) are frequent but not volumetrically important along the RPSZ. These sheet-like bodies may be folded or boudinaged, representing partial melts extracted from the metasediments during the shear zone development. Whole-rock Rb-Sr isotope studies point to a minimum 55410 Ma age for the crystalization of the porphyritic granites. The alkaline granites and the Olivedos granite produced ca. 530 Ma isochrons which look too young; such values probably represent the closure of the Rb-Sr radiometric clock after crystallization and deformation of the plutons, at least 575 Ma ago (Souza et al. 1998). The porphyritic and the alkaline granites crystallized under high oxygen fugacity conditions, as shown by the presence of both magnetite and hematite in these rocks. The presence of ilmenite in the Olivedos pluton suggests less oxidizing conditions. Amphibole and amphibole-plagioclase thermobarometers point to minimum conditions, around 750°C and 6 Kbars, for the crystallization of the porphyritic granites. The zirconium geothermometer indicates higher temperatures, in the order of 800°C, for the porphyritic granites, and 780°C for the Olivedos pluton. Such values agree with the thermobarometric data optained for the country rocks (5,7 Kbar and 765°C; Souza et al. 1998). The geochemical and isotope data set point to a lower crustal source for the porphyritic and the alkaline granites. Granulite facies quartz diorite to tonalite gneisses, belonging or akin to the gneiss-migmatite complex, probably dominate in the source regions. In the case of the alkaline rocks, subordinate contributions of mantle material may be present either as a mixing magma or as a previously added component to the source region. Tonalite to granodiorite gneisses, with some metasedimentary contribution, may be envisaged for the Olivedos granite. The diversity of granitoid rocks along the RPSZ is explained by its lithospheric dimension, allowing magma extraction at different levels, from the middle to lower crust down to the mantle. The presence of basic to intermediate enclaves, associated to the porphyritic granites, confirm the participation of mantle components in the magma extraction system along the RPSZ. This mega-structure is part of the network of Brasiliano-age shear zones, activated by continental collision and terrane welding processes at the end of the Neoproterozoic
Resumo:
The of Serrinha plutonic suite, northeastern portion of the Borborema Province (NE Brazil), is characterized by a voluminous and diversified magmatism of Neoproterozoic age, intrusive in the Archean to Paleoproterozoic gneissic-migmatitic basement of the São José de Campestre massif. Field relations and petrographic and geochemical data allowed us to individualize different lithologic types among this plutonic suite, which is represented by intermediate to mafic enclaves, porphyritic diorites, porphyritic granitoids, porphyritic granodiorites, microporphyritic granites and dykes/sheets of microgranite. The intermediate-to-mafic enclaves occur associated with porphyritic granitoids, showing mixture textures. The porphyrytic diorites occur as isolated bodies, generally associated with intermediate-to-mafic enclaves and locally as enclaves within porphyritic granites. The granodiorites represent mixing between an intermediate to mafic magma with an acidic one. The micropophyritic granites occur as isolated small bodies, generally deformed, while the microgranite dykes/sheets crosscut all the previous granitoids. A U-Pb zircon age of 576 + 3 Ma was obtained for the Serrinha granite. This age is interpreted as age of the peak of the regional ductile deformational event (D3) and of the associated the E-W Rio Jacu shear zone, which control the emplacement of the Neoproterozoic syntectonic plutons. The porphyrytic granitoids show monzogranitic composition, transitional between peraluminous and metaluminous types, typically of the high potassium subalkaline-calc-alkaline series. The intermediate-to-mafic enclaves present vary from quartz diorite to tonalite/granodiorite, with metaluminous, shoshonitic affinity. The diorites are generally quartz-monzodiorite in composition, with metaluminous, subalkaline affinity. They display coarse-grained, inequigranular, porphyrytic texture, with predominance of plagioclase phenocrystals immersed in a matrix composed of biotite and pyroxenes. The microporphyrytic granites are essentially monzogranites of fine- to medium-grained texture, whereas microgranite dikes/sheets varying from monzogranites to syenogranites, with fine to media texture, equigranular. The diversified magmatism occurring at a relatively small surface associated with shear zones, suggests lithospheric dimensions for such structures, with magma extractions from different depths within the lower crust and upper mantle. The geological, geochemical and geochronological characteristics of the Serrinha plutonic suite suggest a pos-collisional geodynamic context for the Neoproterozoic magmatism. Thermobarometric data show emplacement conditions in the range 5-6 kbar (AlTamphibole) and 730-740°C (plagioclase-amphibole) for the porphyrytic granitoids (Serrinha body) and the intermediate-to-mafic enclaves
Resumo:
Geochemical data for granulite terrain are presented from the northernmost portion of the Guaxupe Massif, at Mantiqueira Province, SE Brazil. Several types of granulites are recognized in the area: basic, intermediate and acid granulite. Major and trace elements (including REE) point to only one ma,oma source for these granulites generated at different times. Geochemical data point to plagioclase and apatite fractionation as responsable in the REE behaviour in intermediate and more basic rocks. Overall composition of the Guaxupe Granulites is similar to average composition of the lower crust.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)