894 resultados para LOCAL INFLUENCE
Resumo:
The biostratigraphic classification of the Pleistocene in north-western and central Europe is still insufficiently known, in spite of numerous geological and vegetation-history investigations. The question is not even clear, for example, how often a warm-period vegetation with thermophilous trees such as Quercus, Ulmus, Tilia, Carpinus etc could develop here. In past years, on the basis of several geological and vegetation-history findings, suspicion has often been expressed that some of the classical stages of the Pleistocene could include more warm periods than heretofore assumed, and as a result of recent investigations the period between the Waal and Holstein interglacials seems to include at least two warm periods, of which the Cromer is one. This paper contributes to this problem. The interglacial sediments coming from the Elm-Mountains near Brunswick and from the Osterholz near Elze - both within the limits of the German Mittelgebirge - were investigated by pollen analysis. In both cases a Pinus-Betula zone and a QM zone were found. The vegetation development of the Pinus-Betula zone is characterized in both sequences by the early appearance of Picea. Because of strong local influence at the Osterholz a detailed correlation is difficult. However, vegetation development at the time of the QM zone at both sites was similar; it is especially characterized by the facts that Ulmus clearly migrated to the site earlier than Quercus and was very abundant throughout this time. Furthermore, both diagrams show very low amounts of Corylus. The interglacial of the Osterholz shows in addition to the above; a Carpinus-QM-Picea-zone in which Eucommia reaches a relative high value and in the upper of which Azolla filiculoides was also found. The similarity of vegetation development justifies acceptance of the same age for the occurrences. A comparison of the vegetation development at the Elm and the Osterholz with those of the Eem, Holstein, Waal, and Tegelen warm periods as well as with all the Cromer sites so far investigated shows that only a correlation with the Cromer Complex is possible. This correlation is supported by the geologic relations in the Osterholz (the deposit is overlain by Elster till). Therefore the till-like material with Scandinavian rock fragments underlying the deposit at Elm is of particular interest. The 'Rhume' interglacial beds at Bilshausen, only 60 km south of Osterholz, is also assigned to the Cromer complex, but the two deposits cannot be of the same age because the vegetation development differs. Therefore the Cromer complex must include at least two warm periods. Further conclusions about the relative stratigraphic position of these two occurrences and correlations of other Cromer sites are at this time not possible, however.
Resumo:
Neste trabalho, foi proposta uma nova família de distribuições, a qual permite modelar dados de sobrevivência quando a função de risco tem formas unimodal e U (banheira). Ainda, foram consideradas as modificações das distribuições Weibull, Fréchet, half-normal generalizada, log-logística e lognormal. Tomando dados não-censurados e censurados, considerou-se os estimadores de máxima verossimilhança para o modelo proposto, a fim de verificar a flexibilidade da nova família. Além disso, um modelo de regressão locação-escala foi utilizado para verificar a influência de covariáveis nos tempos de sobrevida. Adicionalmente, conduziu-se uma análise de resíduos baseada nos resíduos deviance modificada. Estudos de simulação, utilizando-se de diferentes atribuições dos parâmetros, porcentagens de censura e tamanhos amostrais, foram conduzidos com o objetivo de verificar a distribuição empírica dos resíduos tipo martingale e deviance modificada. Para detectar observações influentes, foram utilizadas medidas de influência local, que são medidas de diagnóstico baseadas em pequenas perturbações nos dados ou no modelo proposto. Podem ocorrer situações em que a suposição de independência entre os tempos de falha e censura não seja válida. Assim, outro objetivo desse trabalho é considerar o mecanismo de censura informativa, baseado na verossimilhança marginal, considerando a distribuição log-odd log-logística Weibull na modelagem. Por fim, as metodologias descritas são aplicadas a conjuntos de dados reais.
Resumo:
Compositional data for coexisting manganese nodules, micronodules, sediments and pore waters from five areas in the equatorial and S.W. Pacific have been obtained. This represents the largest study of its type ever undertaken to establish the distribution of elements between the various phases within the sediment column. The composition of manganese nodules, micronodules and sediments (on a carbonate-free basis) shows marked differences between the equatorial high productivity zone and the low productivity region of the S.W. Pacific. In the case of the nodules, th is reflects an increased supply of transition elements (notably Ni, Cu and Zn) to the nodules as a result of the in situ dissolution of siliceous tests within the sediment column in the equatorial Pacific high productivity zone. Micronodules display similar, but somewhat different, compositions to those of the associated nodules in each area. Micronodule composition is therefore influenced by the same basic factors that control nodule composition, but is modified by dissolution of the micronodules in situ within the sediment column. Locally, as in the area immediately south of the Marquesas Fracture Zone, the micronodule population is contaminated by small, angular volcanic rock fragments; this leads to apparently anomalous micronodule compositions. Micronodules appear to be a transient feature in the sediment column, especially in the equatorial Pacific. Dissolution of micronodules in the sediment column therefore represents an important source of elements for the growth of manganese nodules in the equatorial Pacific. Sediment composition is markedly influenced by the carbonate content. On a carbonate-free basis, the sediments from the equatorial high productivity zone are quite distinct in composition from those in the S.W. Pacific. This reflects differences in the lithology of the sediments. In the Aitutaki Passage, the local influence of volcanoclastic material in sediment composition has been established. The major cations and anions in pore waters measured here show no major differences between equatorial and S.W. Pacific sediments. Silica is, however, higher in equatorial Pacific pore waters reflecting the dissolution of siliceous tests in these sediments.
Resumo:
Climatic and oceanographic changes, as occurring at a glacial-interglacial scale, may alter the environmental conditions needed for the development of prolific cold-water coral reefs and mounds. Studies constraining the temporal distribution of cold-water corals in the NE Atlantic suggested the cyclic changes of the Atlantic Meridional Overturning Circulation as the main driver for the development and dispersal of cold-water coral ecosystems. However, conclusions were hindered by lack of data from the NW Atlantic. Aiming to overcome this lack of data, the temporal occurrence of cold-water corals in the Cape Lookout area along the southeastern US margin was explored by U-series dating. Furthermore, the local influence of the regional water masses, namely the Gulf Stream, on cold-water coral proliferation and occurrence since the Last Glacial Maximum was examined. Results suggest that the occurrence of cold-water corals in the Cape Lookout area is restricted to interglacial periods, with corals being present during the last ~7 kyr and also during the Eemian (~125 ka). The reconstructed local environmental conditions suggest an offshore displacement of the Gulf Stream and increased influence from the Mid-Atlantic Bight shelf waters during the last glacial period. During the deglacial sea level rise, the Gulf Stream moved coastward providing present-day-like conditions to the surface waters. Nevertheless, present-day conditions at the ocean sea floor were not established before 7.5 cal ka BP once the ultimate demise of the Laurentide ice-sheet caused the final sea level rise and the displacement of the Gulf Stream to its present location. Occasional presence of the Gulf Stream over the site during the Mid- to Late Holocene coincides with enhanced bottom current strength and a slightly higher bottom water temperature, which are environmental conditions that are favorable for cold-water coral growth.
Resumo:
Under contact metamorphic conditions, carbonate rocks in the direct vicinity of the Adamello pluton reflect a temperature-induced grain coarsening. Despite this large-scale trend, a considerable grain size scatter occurs on the outcrop-scale indicating local influence of second-order effects such as thermal perturbations, fluid flow and second-phase particles. Second-phase particles, whose sizes range from nano- to the micron-scale, induce the most pronounced data scatter resulting in grain sizes too small by up to a factor of 10, compared with theoretical grain growth in a pure system. Such values are restricted to relatively impure samples consisting of up to 10 vol.% micron-scale second-phase particles, or to samples containing a large number of nano-scale particles. The obtained data set suggests that the second phases induce a temperature-controlled reduction on calcite grain growth. The mean calcite grain size can therefore be expressed in the form D 1⁄4 C2 eQ*/RT(dp/fp)m*, where C2 is a constant, Q* is an activation energy, T the temperature and m* the exponent of the ratio dp/fp, i.e. of the average size of the second phases divided by their volume fraction. However, more data are needed to obtain reliable values for C2 and Q*. Besides variations in the average grain size, the presence of second-phase particles generates crystal size distribution (CSD) shapes characterized by lognormal distributions, which differ from the Gaussian-type distributions of the pure samples. In contrast, fluid-enhanced grain growth does not change the shape of the CSDs, but due to enhanced transport properties, the average grain sizes increase by a factor of 2 and the variance of the distribution increases. Stable d18O and d13C isotope ratios in fluid-affected zones only deviate slightly from the host rock values, suggesting low fluid/rock ratios. Grain growth modelling indicates that the fluid-induced grain size variations can develop within several ka. As inferred from a combination of thermal and grain growth modelling, dykes with widths of up to 1 m have only a restricted influence on grain size deviations smaller than a factor of 1.1.To summarize, considerable grain size variations of up to one order of magnitude can locally result from second-order effects. Such effects require special attention when comparing experimentally derived grain growth kinetics with field studies.
Resumo:
We report an extended x-ray absorption fine-structure investigation on the Mn K absorption edge in La1-xCaxMnO3 as a function of temperature and magnetic field. The results provide microscopic evidence that the modifications in the local structure around Mn atomic sites, as a function of temperature and applied magnetic field, are directly related to the magneto-transport properties of these materials.
Resumo:
Characterizing the functional connectivity between neurons is key for understanding brain function. We recorded spikes and local field potentials (LFPs) from multielectrode arrays implanted in monkey visual cortex to test the hypotheses that spikes generated outward-traveling LFP waves and the strength of functional connectivity depended on stimulus contrast, as described recently. These hypotheses were proposed based on the observation that the latency of the peak negativity of the spike-triggered LFP average (STA) increased with distance between the spike and LFP electrodes, and the magnitude of the STA negativity and the distance over which it was observed decreased with increasing stimulus contrast. Detailed analysis of the shape of the STA, however, revealed contributions from two distinct sources-a transient negativity in the LFP locked to the spike (similar to 0 ms) that attenuated rapidly with distance, and a low-frequency rhythm with peak negativity similar to 25 ms after the spike that attenuated slowly with distance. The overall negative peak of the LFP, which combined both these components, shifted from similar to 0 to similar to 25 ms going from electrodes near the spike to electrodes far from the spike, giving an impression of a traveling wave, although the shift was fully explained by changing contributions from the two fixed components. The low-frequency rhythm was attenuated during stimulus presentations, decreasing the overall magnitude of the STA. These results highlight the importance of accounting for the network activity while using STAs to determine functional connectivity.
Resumo:
Na0.5Bi0.5TiO3 (NBT) and its derivatives have prompted a great surge in interest owing to their potential as lead-free piezoelectrics. In spite of five decades since its discovery, there is still a lack of clarity on crucial issues such as the origin of significant dielectric relaxation at room temperature, structural factors influencing its depoling, and the status of the recently proposed monoclinic (Cc) structure vis-a-vis the nanosized structural heterogeneities. In this work, these issues are resolved by comparative analysis of local and global structures on poled and unpoled NBT specimens using electron, x-ray, and neutron diffraction in conjunction with first-principles calculation, dielectric, ferroelectric, and piezoelectric measurements. The reported global monoclinic (Cc) distortion is shown not to correspond to the thermodynamic equilibrium state at room temperature. The global monocliniclike appearance rather owes its origin to the presence of local structural and strain heterogeneities. Poling removes the structural inhomogeneities and establishes a long-range rhombohedral distortion. In the process the system gets irreversibly transformed from a nonergodic relaxor to a normal ferroelectric state. The thermal depoling is shown to be associated with the onset of incompatible in-phase tilted octahedral regions in the field-stabilized long range rhombohedral distortion.
Resumo:
Mesoporous quaternary bioactive glasses and glass-ceramic with alkali-alkaline-earth oxide were successfully synthesized by using non-ionic block copolymer P123 and evaporation induced self assembly (EISA) process followed by acid treatment assisted sal-gel method. As prepared samples has been characterized for the structural, morphological and textural properties with the various analytical techniques. Glass dissolution/ion release rate in simulated body fluid (SBF) was monitored by inductively coupled plasma (ICP) emission spectroscopy, whereas the formation of apatite phase and its crystallization at the glass and glass-ceramic surface was examined by structural, textural and microscopic probes. The influence of alkaline-earth oxide content on the glass structure followed by textural property has become more evident. The pristine glass samples exhibit a wormhole-like mesoporous structure, whereas the glass-ceramic composition is found to be in three different phases, namely crystalline hydroxyapatite, wollastonite and a residual glassy phase as observed in Cerabone (R) A/W. The existence of calcium orthophosphate phase is closely associated with the pore walls comprising nanometric-sized ``inclusions''. The observed high surface area in conjunction with the structural features provides the possible explanation for experimentally observed enhanced bioactivity through the easy access of ions to the fluid. On the other hand, presence of multiple phases in glass-ceramic sample inhibits or delays the kinetics of apatite formation. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
A two-dimensional axisymmetric numerical model is presented to study the influence of local magnetic fields on P-doped Si floating zone melting crystal growth in microgravity. The model is developed based on the finite difference method in a boundary-fitted curvilinear coordinate system. Extensive numerical simulations are carried out, and parameters studied include the curved growth interface shape and the magnetic field configurations. Computed results show that the local magnetic field is more effective in reducing the impurity concentration nonuniformity at the growth interface in comparison with the longitudinal magnetic field. Moreover, the curved growth interface causes more serious impurity concentration nonuniformity at the growth interface than the case with a planar growth interface.
Resumo:
In Paper I (Hu, 1982), we discussed the the influence of fluctuation fields on the force-free field for the case of conventional turbulence and demonstrated the general relationships. In the present paper, by using the approach of local expansion, the equation of average force-free field is obtained as (1+b)×B 0=(#x002B;a)B 0#x002B;a (1)×B 0#x002B;K. The average coefficientsa,a (1),b, andK show the influence of the fluctuation fields in small scale on the configurations of magnetic field in large scale. As the average magnetic field is no longer parallel to the average electric current, the average configurations of force-free fields are more general and complex than the usual ones. From the view point of physics, the energy and momentum of the turbulent structures should have influence on the equilibrium of the average fields. Several examples are discussed, and they show the basic features of the fluctuation fields and the influence of fluctuation fields on the average configurations of magnetic fields. The astrophysical environments are often in the turbulent state, the results of the present paper may be applied to the turbulent plasma where the magnetic field is strong.
Resumo:
As a simplified approach for estimating theoretically the influence of local subsoils upon the ground motion during an earthquake, the problem of an idealized layered system subjected to vertically incident plane body waves was studied. Both the technique of steady-state analysis and the technique of transient analysis have been used to analyze the problem.
In the steady-state analysis, a recursion formula has been derived for obtaining the response of a layered system to sinusoidally steady-state input. Several conclusions are drawn concerning the nature of the amplification spectrum of a nonviscous layered system having its layer stiffnesses increasing with depth. Numerical examples are given to demonstrate the effect of layer parameters on the amplification spectrum of a layered system.
In the transient analysis, two modified shear beam models have been established for obtaining approximately the response of a layered system to earthquake-like excitation. The method of continuous modal analysis was adopted for approximate analysis of the models, with energy dissipation in the layers, if any, taken into account. Numerical examples are given to demonstrate the accuracy of the models and the effect of a layered system in modifying the input motion.
Conditions are established, under which the theory is applicable to predict the influence of local subsoils on the ground motion during an earthquake. To demonstrate the applicability of the models to actual cases, three examples of actually recorded earthquake events are examined. It is concluded that significant modification of the incoming seismic waves, as predicted by the theory, is likely to occur in well defined soft subsoils during an earthquake, provided that certain conditions concerning the nature of the incoming seismic waves are satisfied.
Resumo:
The aim of the present study was to assess the influence of local environmental olfactory cues on place learning in rats. We developed a new experimental design allowing the comparison of the use of local olfactory and visual cues in spatial and discrimination learning. We compared the effect of both types of cues on the discrimination of a single food source in an open-field arena. The goal was either in a fixed or in a variable location, and could be indicated by local olfactory and/or visual cues. The local cues enhanced the discrimination of the goal dish, whether it was in a fixed or in a variable location. However, we did not observe any overshadowing of the spatial information by the local olfactory or visual cue. Rats relied primarily on distant visuospatial information to locate the goal, neglecting local information when it was in conflict with the spatial information.
Resumo:
Land use change with accompanying major modifications to the vegetation cover is widespread in the tropics, due to increasing demands for agricultural land, and may have significant impacts on the climate. This study investigates (1) the influence of vegetation on the local climate in the tropics; (2) how that influence varies from region to region; and (3) how the sensitivity of the local climate to vegetation, and hence land use change, depends on the hydraulic characteristics of the soil. A series of idealised experiments with the Hadley Centre atmospheric model, HadAM3, are described in which the influence of vegetation in the tropics is assessed by comparing the results of integrations with and without tropical vegetation. The sensitivity of the results to the soil characteristics is then explored by repeating the experiments with a differing, but equally valid, description of soil hydraulic parameters. The results have shown that vegetation has a significant moderating effect on the climate throughout the tropics by cooling the surface through enhanced latent heat fluxes. The influence of vegetation is, however, seasonally dependent, with much greater impacts during the dry season when the availability of surface moisture is limited. Furthermore, there are significant regional variations both in terms of the magnitude of the cooling and in the response of the precipitation. Not all regions show a feedback of vegetation on the local precipitation; this result has been related both to vegetation type and to the prevailing meteorological conditions. An important finding has been the sensitivity of the results to the specification of the soil hydraulic parameters. The introduction of more freely draining soils has changed the soil-moisture contents of the control, vegetated system and has reduced, significantly, the climate sensitivity to vegetation and by implication, land use change. Changes to the soil parameters have also had an impact on the soil hydrology and its interaction with vegetation, by altering the partitioning between fast and slow runoff processes. These results raise important questions about the representation of highly heterogeneous soil characteristics in climate models, as well as the potential influence of land use change on the soil characteristics themselves.